• 제목/요약/키워드: Optimized angle

검색결과 527건 처리시간 0.023초

154 kV급 변압기 절연물 앵글링과 캡의 최적성형 기술 개발 (Development of Optimum Shape Forming Technology of Angle Ring and Cap for 154 kV Transformer Insulation)

  • 서왕벽;김종원;유정수;배동호
    • 한국전기전자재료학회논문지
    • /
    • 제23권11호
    • /
    • pp.880-885
    • /
    • 2010
  • The Angle Ring and Cap which is called pressboard are settled at the primary and secondary coil winding of 154 kV transformer that can reduce effectively distance of insulation. As it has not manufactured pressboard of Angle Ring and Cap for high voltage grade, insulation components industry especially high voltage transformer has not participate in a competition with worldwide yet. That's why is difficult to make an specialized shape of insulation components of high voltage grade. Therefore it has finally completed to make an deformation manufacturing utility using an bellowed special analysis tools. This study that uses various analysis program determining optimum shape about insulation of Angle Ring and Cap which is related life of high voltage transformer. In addition to develop forming equipment with an specialized five steps pressing. That is also based on the mechanical strength evaluation and test, it is investigated optimized processing components.

레인지 후드용 시로코 홴의 성능 향상을 위한 연구 (Numerical study on the Performance Improvement of the Sirocco Fan in a Range Hood)

  • 박상태;최영석;박문수;김철호;권오명
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.572-577
    • /
    • 2004
  • This paper presents numerical study on the performance improvement of the sirocco fan in a range hood. The performance of sirocco fan means a higher flowrate, a higher static pressure and a lower required motor power in a fixed geometry constraint. Various impeller geometric parameters, such as blade profile, blade diameter, blade thickness profile and blade exit angle, were investigated by numerically and the results were compared with each other to know the effects on the performance. In this approach, the volute geometry were fixed with the original shape. The numerical results show that the blade profile with airfoil shape and small exit blade thickness increases the performance. The blade exit angle shows optimum angle within a varied range. The efficiency of the optimized exit angle was about $10\%$ higher than the base blade exit angle and the static pressure was about $28\%$ higher at the flow coefficient 0.22.

  • PDF

탄도미사일의 비행궤적 예측 방법 연구 - 탄종별 비행경로각과 사거리를 중심으로 - (A Study on the Flight Trajectory Prediction Method of Ballistic Missiles - BM type by Adjusting the Angle of a Flight Path and a Range -)

  • 유병천;김주현;권용수;최봉완
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.131-140
    • /
    • 2020
  • The characteristics of ballistic missiles are changing rapidly but studies have mostly focused on fragmentary flight trajectory analysis estimating the changing characteristics of some types, while there is a lack of research on comprehensive and efficient ballistic search, detection and prediction for missiles including the new types that have been gaining attention lately. This paper analyzes the flight trajectory characteristics of ballistic missiles at various ranges considering flight path angle adjustment, specific impulse and drag force with altitude based on the optimized equations of motion reflecting the parameters of North Korea's general and new types of ballistic missiles. The flight trajectory characteristics of representative ranges for each ballistic missile were analyzed by adjusting the flight path angle in the minimum energy method, lofted method, and depressed method. In addition, High value target can attacked by ballistic missiles considering flight path angle adjustment at various points. It's expected to be used to Threat Evaluation and Weapon Allocation, and deployment of defense systems by interpreting the analysis of the latest Iskander-class ballistic missiles and the new multiple rocket launcher.

최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로 (The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms)

  • 김욱동;장한종;오성권
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Study on Electrical Characteristics According Process Parameters of Field Plate for Optimizing SiC Shottky Barrier Diode

  • Hong, Young Sung;Kang, Ey Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.199-202
    • /
    • 2017
  • Silicon carbide (SiC) is being spotlighted as a next-generation power semiconductor material owing to the characteristic limitations of the existing silicon materials. SiC has a wider band gap, higher breakdown voltage, higher thermal conductivity, and higher saturation electron mobility than those of Si. When using this material to implement Schottky barrier diode (SBD) devices, SBD-state operation loss and switching loss can be greatly reduced as compared to that of traditional Si. However, actual SiC SBDs exhibit a lower dielectric breakdown voltage than the theoretical breakdown voltage that causes the electric field concentration, a phenomenon that occurs on the edge of the contact surface as in conventional power semiconductor devices. Therefore in order to obtain a high breakdown voltage, it is necessary to distribute the electric field concentration using the edge termination structure. In this paper, we designed an edge termination structure using a field plate structure through oxide etch angle control, and optimized the structure to obtain a high breakdown voltage. We designed the edge termination structure for a 650 V breakdown voltage using Sentaurus Workbench provided by IDEC. We conducted field plate experiments. under the following conditions: $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $75^{\circ}$. The experimental results indicated that the oxide etch angle was $45^{\circ}$ when the breakdown voltage characteristics of the SiC SBD were optimized and a breakdown voltage of 681 V was obtained.

Effect of Target Angle and Thickness on the Heel Effect and X-ray Intensity Characteristics for 70 kV X-ray Tube Target

  • Kim, Gyehong;Lee, Rena
    • 한국의학물리학회지:의학물리
    • /
    • 제27권4호
    • /
    • pp.272-276
    • /
    • 2016
  • To investigate the optimum x-ray tube design for the dental radiology, factors affecting x-ray beam characteristics such as tungsten target thickness and anode angle were evaluated. Another goal of the study was to addresses the anode heel effect and off-axis spectra for different target angles. MCNPX has been utilized to simulate the diagnostic x-ray tube with the aim of predicting optimum target angle and angular distribution of x-ray intensity around the x-ray target. For simulation of x-ray spectra, MCNPX was run in photon and electron using default values for PHYS:P and PHYS:E cards to enable full electron and photon transport. The x-ray tube consists of an evacuated 1 mm alumina envelope containing a tungsten anode embedded in a copper part. The envelope is encased in lead shield with an opening window. MCNPX simulations were run for x-ray tube potentials of 70 kV. A monoenergetic electron source at the distance of 2 cm from the anode surface was considered. The electron beam diameter was 0.3 mm striking on the focal spot. In this work, the optimum thickness of tungsten target was $3{\mu}m$ for the 70 kV electron potential. To determine the angle with the highest photon intensity per initial electron striking on the target, the x-ray intensity per initial electron was calculated for different tungsten target angles. The optimum anode angle based only on x-ray beam flatness was 35 degree. It should be mentioned that there is a considerable trade-off between anode angle which determines the focal spot size and geometric penumbra. The optimized thickness of a target material was calculated to maximize the x-ray intensity produced from a tungsten target materials for a 70 keV electron energy. Our results also showed that the anode angle has an influencing effect on heel effect and beam intensity across the beam.

염료감응형 태양전지의 상대전극 Pt 필름 두께와 증착 각도가 효율에 미치는 영향에 관한 연구 (Effects of the Sputtering Thickness and the Incident Angle of Pt Film Deposition as a Counter Electrode for Dye-sensitized Solar Cells)

  • 김희제;여태빈;박성준;김휘영;서현웅;손민규;채원용;이경준
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.588-593
    • /
    • 2010
  • Sputter deposition on a Pt counter electrode was studied using radio frequency (RF) plasma as the improvement of incident photon to current conversion efficiency (IPCE) for dye-sensitized solar cells (DSCs). Effects of the sputtering thickness and the incident angle on a Pt counter electrode for DSCs were investigated. Experiments to get the optimal sputtering time for the performance of the DSCs were carried out. And it is found that the optimized sputtering time was 120 seconds, in addition, the incident angles of the substrate was adjusted from $0^{\circ}$ to $60^{\circ}$. The maximum efficiency of 5.37% was obtained at the incident angle of $40^{\circ}$ with an active cell area of $1cm^2$.

AE-CORDIC: 각도 인코딩 기반 고속 CORDIC 구조 (AE-CORDIC: Angle Encoding based High Speed CORDIC Architecture)

  • 조용권;곽승호;이문기
    • 대한전자공학회논문지SD
    • /
    • 제41권12호
    • /
    • pp.75-81
    • /
    • 2004
  • AE-CORDIC은 CORDIC 연산의 회전 방향을 미리 계산하는 알고리즘을 이용해 CORDIC의 연산속도를 향상 시켜준다. 회전방향을 예측할 수 없는 부분은 Lookup-Table로 대체하고, 예측 가능 부분만을 CORDIC 으로 처리하였는데, 회전방향 예측은 별도의 추가 하드웨어 없이 간단하게 인코딩 할 수 있게 된다. 그리고, Unrolled CORDIC 구조에서는 Lookup-Table입력 비트 수가 크지 않으면 Lookup-Table의 하드웨어 증가보다 CORDIC 연산 단에서 감소되는 ADDER의 하드웨어가 더 크기 때문에 오히려 전체 하드웨어 크기가 줄어든다. 본 논문에서는 회전방향 예측 가능 구간 및 예측 방법을 제안하고, 최적화된 Lookup-Table의 크기를 결정하여 기존의 회전방향 예측 알고리즘인 P-CORDIC 과 비교하였다. 그리고, 입력 각이 16비트 경우를 삼성 0.18㎛ 공정을 이용해 논리 합성하여 하드웨어 크기, 성능, 정확성을 검증하였다.

다면 드릴의 성능 해석과 최적화 (Analysis of multi-facet drill(MFD) performance and optimization of MFD geometry)

  • 이상조;윤영식
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1523-1532
    • /
    • 1990
  • 본 연구에서는 다면드릴을 연구 대상으로 하여 다면 드릴의 기하학적 형상인 자들을 이용하여 드릴 작업시 추력과 토크를 예측하는 데 적합한 절삭력 예측 모델을 유도하였으며, 추력과 토크를 최소화하는 방향으로 다면드릴의 각 형상인자를 최적화 하였다.

진동제어를 위한 엔진 기진력의 최적화 (Optimization of Engine Excitation Forces for Vibration Control)

  • 정의봉;유완석;박정근
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.709-717
    • /
    • 2004
  • The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method. the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60 % of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.