• Title/Summary/Keyword: Optimized analysis

Search Result 3,459, Processing Time 0.043 seconds

Optimization of Iron Core Structure for Controlling Induced Electric Field Distribution Using the Continuum Design Sensitivity Analysis (CDSA) (설계 민감도법을 이용한 유도 전기장 분포 제어를 위한 철심구조 최적화 연구)

  • Park Joon-Goo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.8
    • /
    • pp.397-400
    • /
    • 2006
  • An optimized iron core structure of stimulating coil are presented in order to control the induced electric field distribution using the Continuum Design Sensitivity Analysis (CDSA) combined with a commercially available generalized finite element code (OPERA). The results show that a Figure-Of-Eight (FOE) coil as well as a circular coil with the proposed iron core structure can increase induced electric field intensity by more than two times and make better field localization, compared with those of existing stimulation coil with a air core. After considering manufacturing constraints, a practical iron core structure based on the proposed optimized one is proposed and its performance is analyzed.

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

A Study on the T-branch Forming with 3-D Finite Element Method (3차원 유한요소법을 이용한 T형 가지관의 용접자리 성형 방법에 관한 연구)

  • 홍대훈;황두순;신동필;홍성인
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • In this study, the optimized initial hole shape for T-branch forming was proposed to obtain effective welding region. Design variables were determined by approximation analysis using volume constant condition. We performed 3D elastic-plastic FEM(Finite Element Method) analysis to simulate T-branch forming process. The variation of height and thickness of T-branch with various hole shapes was investigated. The optimized initial hole shape equation was obtained by using results for the numerical analysis.

  • PDF

Optimization and Structure Analysis of Brake Disc for Free-fall Winch (자유 낙하 윈치용 브레이크 디스크의 구조해석 및 최적설계)

  • Ku, Hyoun-Kon;Kim, Jin-Woo;Won, Cheon;Song, Jung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.55-61
    • /
    • 2012
  • The structure of winch brake disk was successfully designed and developed based on sizing optimization. In this research, static analysis was performed by commercial software ANSYS v12.0. To simulate the working process of disk brake, the real properties of materials and working conditions were considered. Based on the results of the static structural analysis, the existing designs of the brake discs were optimized. Among existing designs, there are three cases that have achieved an efficient light weight around 200g. As a result, the optimized weight of each case was 3.41kg, 3.42kg, and 3.44kg, respectively. Finally, through prototyping and performance testing, the stability of the optimized brake disc was verified. Although, this free-fall winch brake disk had been developed in design and evaluation techniques, more detailed plans for developing the disk brake structure were also proposed as a further study based on this research.

Seismic analysis of steel structure with brace configuration using topology optimization

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Ji, Jing
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.501-515
    • /
    • 2016
  • Seismic analysis for steel frame structure with brace configuration using topology optimization based on truss-like material model is studied. The initial design domain for topology optimization is determined according to original steel frame structure and filled with truss-like members. Hence the initial truss-like continuum is established. The densities and orientation of truss-like members at any point are taken as design variables in finite element analysis. The topology optimization problem of least-weight truss-like continuum with stress constraints is solved. The orientations and densities of members in truss-like continuum are optimized and updated by fully-stressed criterion in every iteration. The optimized truss-like continuum is founded after finite element analysis is finished. The optimal bracing system is established based on optimized truss-like continuum without numerical instability. Seismic performance for steel frame structures is derived using dynamic time-history analysis. A numerical example shows the advantage for frame structures with brace configuration using topology optimization in seismic performance.

Optimized Mixing Design of Lightweight Aerated Concrete by Response Surface Analysis (반응표면분석법에 따른 경량기포콘크리트 최적배합 도출에 관한 연구)

  • Lee, Sang-An;Jung, Chan-Woo;Kim, Wha-Jung;Ahn, Jung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.745-752
    • /
    • 2009
  • This paper presents the optimized mixing design of lightweight aerated concrete using hydrogen peroxide. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. The influencing factors of experimental are unit cement content, water ratio and hydrogen peroxide ratio. According to the analysis of variance, at the hardened state, water ratio and hydrogen peroxide ratio affects on dried density, compressive strength and bending strength of lightweight aerated concrete, but unit cement content affects on only dried density. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for lightweight aerated concrete using hydrogen peroxide were unit cement content of 800 kg/$m^3$, water ratio of 44.33% and hydrogen peroxide ratio of 10%.

An Analysis of Maintenance Cost of Preventive Optimized-Rehabilitation Area Method in Asphalt Concrete Pavement (예방적 최소단면 보수공법 적용 아스팔트 도로포장의 유지관리 비용분석)

  • Kim, Nak-Seok;Hong, Eun-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.45-51
    • /
    • 2009
  • The paper presents the economic analysis of optimized-rehabilitation area method considered as one of the preventive maintenance methods in asphalt concrete pavement. The optimized-rehabilitation area was selected based on the analysis of traffic lane characteristics. The main concept of the selected method was to minimize the maintenance cost. The effective width of traffic lane in this method was 70 cm of each wheel path. According to the traffic survey conducted in this research, more than 95% of vehicles passed within the width of each wheel path. The new preventive optimized-rehabilitation area method showed less maintenance cost than the conventional overlay. In addition, traffic congestions and the user cost can be reduced. The research results revealed that the total maintenance cost was reduced by 35% by using the new method compare to the conventional one.

DC Motor Control using Regression Equation and PID Controller (회귀방정식과 PID제어기에 의한 DC모터 제어)

  • 서기영;이수흠;문상필;이내일;최종수
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.129-132
    • /
    • 2000
  • We propose a new method to deal with the optimized auto-tuning for the PID controller which is used to the process -control in various fields. First of all, in this method, initial values of DC motor are determined by the Ziegler-Nichols method. Finally, after studying the parameters of PID controller by input vector of multiple regression analysis, when we give new K, L, T values to multiple regression model, the optimized parameters of PID controller is found by multiple regression analysis program.

  • PDF

OPTIMIZED NUMERICAL ANNULAR FLOW DRYOUT MODEL USING THE DRIFT-FLUX MODEL IN TUBE GEOMETRY

  • Chun, Ji-Han;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.387-396
    • /
    • 2008
  • Many experimental analyses for annular film dryouts, which is one of the Critical Heat Flux (CHF) mechanisms, have been performed because of their importance. Numerical approaches must also be developed in order to assess the results from experiments and to perform pre-tests before experiments. Various thermal-hydraulic codes, such as RELAP, COBRATF, MARS, etc., have been used in the assessment of the results of dryout experiments and in experimental pre-tests. These thermal-hydraulic codes are general tools intended for the analysis of various phenomena that could appear in nuclear power plants, and many models applying these codes are unnecessarily complex for the focused analysis of dryout phenomena alone. In this study, a numerical model was developed for annular film dryout using the drift-flux model from uniform heated tube geometry. Several candidates of models that strongly affect dryout, such as the entrainment model, deposition model, and the criterion for the dryout point model, were tested as candidates for inclusion in an optimized annular film dryout model. The optimized model was developed by adopting the best combination of these candidate models, as determined through comparison with experimental data. This optimized model showed reasonable results, which were better than those of MARS code.

The Effect of Preform Shape for Hot-forging Process of Aluminum-alloy (예비성형체형상이 알루미늄합금의 열간단조공정에 미치는 영향)

  • Kwon, Y.M.;Lee, Y.S.;Song, J.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.106-110
    • /
    • 2001
  • A effective and accurate method of hot-forging process is essential to the design of optimized dies as well as workpiece of intial shape. the former is achieved by a proper forging sequence with invokes serious problem like excessive load and die wear, die failure, underfilling and lap defects. the latter is achieved by a proper preform design of case I, case II, case III. metal forming processes of aluminum-alloy forged at an effective strain and temperature are analyzed by the finite element method. the non-isothermal analysis have been compared with optimized in terms of preform shape.

  • PDF