• Title/Summary/Keyword: Optimized analysis

Search Result 3,458, Processing Time 0.038 seconds

Development of a CDMA Field Engineering System (CDMA 필드 엔지니어링 시스템 개발)

  • Lee, Chan-Su;Im, Hui-Gyeong;Hong, Seong-Cheol;Im, Jae-Bong;Seong, Yeong-Rak;O, Ha-Ryeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1500-1510
    • /
    • 2000
  • In this paper, a CDMA (Code Division Multiple Access) field engineering system is designed and implemented for managing cellular telecommunication base stations. For high quality of CDMA service, optimized cell planning is crucial. For such cell planning, base stations must be managed based on analysis of CDMA field dta. The proposed system consists of two modules: a measurement module and au analysis of CDMA field dta. eh proposed system consists of tow modules; a measurement module and an analysis module. The measurement module collects various CDMA field dta and displays them on a vector map in a real-time manner. The analysis module associates measured data with various related information, e.g. base station information, and process them statistically. The proposed system can drastically reduce base station management cost.

  • PDF

Optimum Design of Transverse Flux Linear Motor for Maximizing Thrust Force Using Table of Orthogonal Array (직교배열표를 이용한 추력을 최대화하기 위한 횡자속 선형전동기의 최적설계)

  • Hong, Do Kwan;Woo, Byung Chul;Kang, Do Hvun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.505-510
    • /
    • 2005
  • On this study, we optimized maximizing the thrust force at the TFLM(Transverse Flux Linear Motor) using design of experiments by the table of orthogonal array and the analysis of means(ANOM), and classified the most contributive design factor maximizing the thrust force at the TFLM by analysis of variance(ANOVA). From now on, we are going to apply the required technique to design various uses and shapes of the TFLM.

Elucidation of Multifaceted Evolutionary Processes of Microorganisms by Comparative Genome-Based Analysis

  • Nguyen, Thuy Vu An;Hong, Soon-Ho;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1301-1305
    • /
    • 2009
  • The evolution of living organisms occurs via a combination of highly complicated processes that involve modification of various features such as appearance, metabolism and sensing systems. To understand the evolution of life, it is necessary to understand how each biological feature has been optimized in response to new environmental conditions and interrelated with other features through evolution. To accomplish this, we constructed contents-based trees for a two-component system (TCS) and metabolic network to determine how the environmental communication mechanism and the intracellular metabolism have evolved, respectively. We then conducted a comparative analysis of the two trees using ARACNE to evaluate the evolutionary and functional relationship between TCS and metabolism. The results showed that such integrated analysis can give new insight into the study of bacterial evolution.

Structural Optimization and Performance Evaluation of Ultra Precision Co-axial Ferrule Grinding Machining System (초미세 고기능 동축가공 연삭 시스템의 구조 최적화 및 특성 평가)

  • Ahn K.J.;Lee H.J.;Kim G.J.;Kim G.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.559-560
    • /
    • 2006
  • Fiber optic connector, ferrule, is a device to connect and align fiber optics cable on fiber-optic communication system. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that structure of co-axial ferrule grinding system is optimized. In this paper, Structural analysis was performed to analyze bed and frame structure of co-axial grinding machine. Deformation and modal analysis for natural frequency was performed using ANSYS design space program to analyze structural characteristics. New improved model of bed and frame structure was proposed based on initial basic model. Therefore, we estimated the structural characteristics precision co-axial grinding machining system.

  • PDF

Durability Performance Analysis of a Differential Gear for a Low Speed Vehicles (저속차량 차동장치의 내구성능 해석)

  • Cheon, Jong-Pil;Pyoun, Young-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.897-902
    • /
    • 2012
  • Low speed vehicle(LSV), golf carts have unique requirements to differential gear design. For double axle torque LSV differential loading conditions were determined with the help of analytical model and ANSYS finite element analysis. With stress safety factor 3.15, fatigue safety factor 1.08 and fatigue life 106 cycle ring gear teeth strength analysis is performed and structure design optimized. This allows reducing overall cost of differential unit.

Reliability Analysis and Optimization Considering Dynamic Characteristics of Vehicle Torsion Beam (차량 토션빔의 동적 특성을 고려한 신뢰성 분석 및 최적설계)

  • 이춘승;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.813-817
    • /
    • 2002
  • This paper presents the reliability analysis technique on the dynamic characteristics of the torsion beam consisting the suspension system of passenger car. We utilize response surface method (RSM) and Monte Carlo simulation to obtain the response surface model that describes the limit state function for the natural frequencies of the torsion beam. Using the response surface model and the design optimization technique, we have obtained the optimized section considering the reliability of the torsion beam structure.

  • PDF

Wear Debris Analysis using the Color Pattern Recognition

  • Chang, Rae-Hyuk;Grigoriev, A.Y.;Yoon, Eui-Sung;Kong, Hosung;Kang, Ki-Hong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.34-42
    • /
    • 2000
  • A method and results of classification of four different metallic wear debris were presented by using their color features. The color image of wear debris was used far the initial data, and the color properties of the debris were specified by HSI color model. Particles were characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used fer the definition of a classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Influence of TBM operational parameters on optimized penetration rate in schistose rocks, a case study: Golab tunnel Lot-1, Iran

  • Eftekhari, A.;Aalianvari, A.;Rostami, J.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.239-248
    • /
    • 2018
  • TBM penetration rate is a function of intact rock properties, rock mass conditions and TBM operational parameters. Machine rate of penetrationcan be predicted by knowledge of the ground conditions and its effects on machine performance. The variation of TBM operational parameters such as penetration rate and thrust plays an important role in its performance. This study presents the results of the analysis on the TBM penetration rates in schistose rock types present along the alignment of Golab tunnel based on the analysis of a TBM performance database established for every stroke through different schistose rock types. The results of the analysis are compared to the results of some empirical and theoretical predictive models such as NTH and QTBM. Additional analysis was performed to find the optimum thrust and revolution per minute values for different schistose rock types.

Identification of ambient pore pressure and rigidity index from piezocone dissipation test (피에조콘 소산시험을 이용한 평형간극수압과 강성지수의 역해석)

  • 김영상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.49-54
    • /
    • 2002
  • This paper describes a systematic way of simultaneously identifying the ambient pore pressure and the rigidity index (=G/s$\_$u/) of soil by applying an optimization technique to the piezocone dissipation test result. An ambient pore pressure and optimal rigidity index were determined by minimizing the differences between theoretical excess pore pressures developed by Randolph & Wroth(1979) and measured excess pore pressures from piezocone using optimization technique. The effectiveness of the proposed back-analysis method was examined against the well-documented performance of piezocone dissipation tests (Tanaka & Sakagami, 1989), from the viewpoints of proper determination of selected target parameters and saving of test duration. It is shown that the proposed back-analysis method can evaluate properly the ambient pore pressure and the rigidity index by using only the early phase of the dissipation test data. Also, it is shown that with the optimized rigidity index and ambient pore pressure the proposed back-analysis method permits the horizontal coefficient of consolidation to be identified rationally.

  • PDF

Structural Analysis of Self-weight of Cleaning Robot for External Windows (유리창 외부 청소용 로봇의 자중에 대한 구조해석)

  • Kim, Kyoon-Tai;Jun, Young-Hun;Kim, Jeoung-Tae;Park, Kyeong-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.203-204
    • /
    • 2017
  • In case of developing a guide-rail type window cleaning robot, only the first prototype has been developed. In this study, it was considered that the size and the load of the window cleaning robot was not optimized, and through the structural analysis of the self-weight of the window cleaning robot, the stress concentration area was derived and the concentrated stress was quantified. Analysis showed that the upper rail shaft had a bending stress of 9.964Mpa and the bolt had a shear stress of 19.544Mpa. The results of this study will be used as basic data for designing future prototypes.

  • PDF