• Title/Summary/Keyword: Optimized Path

Search Result 269, Processing Time 0.025 seconds

Optimized Location Selection of Active Mounting System Applied to 1D Beam Structure

  • Kim, Byeongil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.505-511
    • /
    • 2022
  • The objective of this article is finding optimized locations of active mounts applied to 6-DOF beam structure with two active paths. When sinusoidal excitation forces are applied to the beam structure, secondary forces from two active mounts which can minimize (ideally becoming zero) transmitted forces are calculated mathematically and the vibration attenuation performance is validated through computer simulations. When the force applied to two active mounts are relatively low, those specific locations are considered as optimized location of active mounting system. As the location of mount changes, amplitude and phase of secondary forces in each path are analyzed with 3D plots. Based on the simulation results, a criterion for selecting mounting location is suggested and it would be very useful for selecting actuators for active mounts appropriately.

Sigma-Delta Modulator using a novel FDPA(Feedback Delay Path Addition) Technique (새로운 FDPA 기법을 사용한 시그마-델타 변조기)

  • Jung, Eui-Hoon;Kim, Jae-Bung;Cho, Seong-Ik
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.511-516
    • /
    • 2013
  • This paper presents a SDM using the FDPA technique. The FDPA technique is the added feedback path which is the delayed path of DAC output. The designed SDM increases the SNR by adding the delayed digital feedback path. The proposed SDM is easily implemented by eliminating the analog feedback path. Through the MATLAB modeling, the optimized coefficients are obtained to design the SDM. The designed SDM has a power consumption of $220{\mu}W$ and SNR(signal to noise ratio) of 81dB at the signal-bandwidth of 20KHz and sampling frequency of 2.56MHz. The SDM is designed using the $0.18{\mu}m$ standard CMOS process.

Quantitative Analysis of Initial Dispersion Condition Effects on Randomness of Magnus Rotor Bomblet (Magnus Rotor 자탄의 초기 방출조건이 분산도에 미치는 영향에 대한 정량적 분석)

  • Bai, Ikhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.83-89
    • /
    • 2019
  • This research describes quantitative effects of initial dispersion conditions upon the dispersion randomness of Magnus rotor bomblets. Ratios of the missile spin rate to the missile velocity, a, flight path angles, ${\gamma}$ and altitudes, h, were changed to investigate their effects on dispersion randomness. Dispersion was analyzed through calculation of 6 degree of freedom motion equation with aerodynamic coefficients from wind tunnel experiments. In order to analyze the randomness, regression analysis is adopted to calculate the coefficient of determination. The optimized ratio of the missile spin rate to the missile velocity and flight path angle were obtained and the dispersion altitudes had more effect on the dispersion diameter and had less effect on dispersion than other parameters.

A Study on the Flight Trajectory Prediction Method of Ballistic Missiles - BM type by Adjusting the Angle of a Flight Path and a Range - (탄도미사일의 비행궤적 예측 방법 연구 - 탄종별 비행경로각과 사거리를 중심으로 -)

  • Yoo, Byeong Chun;Kim, Ju Hyun;Kwon, Yong Soo;Choi, Bong Wan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • The characteristics of ballistic missiles are changing rapidly but studies have mostly focused on fragmentary flight trajectory analysis estimating the changing characteristics of some types, while there is a lack of research on comprehensive and efficient ballistic search, detection and prediction for missiles including the new types that have been gaining attention lately. This paper analyzes the flight trajectory characteristics of ballistic missiles at various ranges considering flight path angle adjustment, specific impulse and drag force with altitude based on the optimized equations of motion reflecting the parameters of North Korea's general and new types of ballistic missiles. The flight trajectory characteristics of representative ranges for each ballistic missile were analyzed by adjusting the flight path angle in the minimum energy method, lofted method, and depressed method. In addition, High value target can attacked by ballistic missiles considering flight path angle adjustment at various points. It's expected to be used to Threat Evaluation and Weapon Allocation, and deployment of defense systems by interpreting the analysis of the latest Iskander-class ballistic missiles and the new multiple rocket launcher.

The study for VOCs analysis in long path by open path FT-IR spectrometer (Open path FT-IR spectrometer를 사용한 원거리의 VOCs 측정에 관한 연구)

  • Cho, Nam Wook;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • The harmful materials as volatile organic compounds (VOCS) that is easy for gas to be changed from liquid on ambient temperature, those should be controlled by Korea Chemicals Management Association. The VOCs samples should be collected directly in place so that those could be analyzed. Generally but it couldn't avoid to have the risk of analyst. Moreover, if there is the place limited to entrance, it is impossible to collect directly and measure. Owing to such problem, it tried to be solved by open path FT-IR spectrometer that could be studied on the combustion gases within long path and VOCs samples were tried to measure to large volume by remote and real time. Firstly, it was to investigate optimized measured length between the system and benzene sample of VOCs. As result, The optimized measured length was confirmed with 15 meter length and the qualitative analysis could be measured on seven VOC samples. The calibration curve as quantitative analysis of benzene samples could be worked. On the basis of the result, the system as remote monitor could show to have potentiality.

Loading Path Optimization in Aluminum Tube Hydroforming using Response Surface Method (반응표면법을 이용한 알루미늄 튜브 하이드로포밍의 하중경로 최적화)

  • Lim, H.T.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.314-317
    • /
    • 2007
  • Automotive rear subframe of aluminum tube was developed by using hydroforming process, based on the numerical analysis and physical tryouts. In the previous study, the effect of prebending was evaluated on the basis of forming limit diagram which had been obtained from free bulging, T-shape forming and cross-shape forming, using the developed tube hydroformability testing system. In order to get the sound products, appropriate internal pressure is to be imposed corresponding to the axial feeding. In this study, the loading path, the combination of internal pressure and axial feeding during the process, was optimized to ensure minimum thickness variation and dimensional accuracy, by using response surface method.

  • PDF

A Proposal of LOS Guidance System of a Ship in Straight-line Navigation under Ocean Currents and Its Optimization Using Genetic Algorithm (해류중 직선 항행하는 선박의 LOS 가이던스 시스템의 제안과 유전 알고리즘을 이용한 최적화)

  • Kim Jong-Hwa;Lee Byung-Kyul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.124-131
    • /
    • 2005
  • This paper suggests LOS(Line-Of-Sight) guidance system of a surface vessel in straight-line navigation under ocean currents An LOS vector from the vessel to a point on the path between two way-points is decided and a heading angle is calculated to converge to follow the desired path based on the LOS vector This guidance system is called LOS guidance system. The suggested LOS guidance law has parameters to be properly chosen according to navigational environment. Parameters of LOS guidance system are optimized to reduce propulsive energy and/or position error between desired Position and present position of a ship using genetic algorithm which is a strong optimization algorithm with adaptational random search The effectiveness of the suggested LOS guidance system is assured through computer simulations.

Mobile Robot Navigation using Optimized Fuzzy Controller by Genetic Algorithm

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.12-19
    • /
    • 2015
  • In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly in the unknown multi-obstacle environment, this paper presented the navigation problem of a wheel mobile robot based on proximity sensors by fuzzy logic controller. Then a genetic algorithm was applied to optimize the membership function of input and output variables and the rule base of the fuzzy controller. Here the environment is unknown for the robot and contains various types of obstacles. The robot should detect the surrounding information by its own sensors only. For the special condition of path deadlock problem, a wall following method named angle compensation method was also developed here. The simulation results showed a good performance for navigation problem of mobile robots.

Real time trajectory control for two wheeled mobile robot under dynamic environments

  • Lee, Jin-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.120.4-120
    • /
    • 2001
  • In this paper, a method of generating trajectories in real time for a mobile robot in a dynamic environment is proposed. Specifically, this method is focused on soccer-playing robots that need to calculate trajectories in real time, which are constantly subject to rapidly change as targets and obstacles move. The robots also should move at the fastest available speed, while tracking the generated trajectories. The method proposed in this paper solves the geometric problem of finding a smooth curve that joins two endpoints. To have this solved, we assign five constraints to each endpoint, which are the usual x, y, theta, and curvature as well as the influence of the initial robot velocity on the path. With these five constraints, the path generated can always be physically followed by robot. Through this method, the travel time of the robot over the entire path can b optimized. Therefore it can ...

  • PDF

Active Noise Control in the Duct Using the Ring-type Smart Foam and the Optimization of a Cancellation Path (환형 스마트 폼을 이용한 덕트 내부의 능동 소음 제어 및 상쇄 경로 최적화)

  • 한제헌;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.499-507
    • /
    • 2003
  • This paper presents a method for active noise control (ANC) in a duct by using a ring-tyPe smart foam. The ring-type smart foam consists of an elastic porous material of lining shape and a PVDF film embedded In the material. The PVDF element acts as a secondary sound source to reduce the noise. Active noise control using a ring-type smart foam is only effective locally because of the way to excite radially. To enlarge the quiet zone, the duct Is lined with additional acoustic foam between the smart foam and the error microphone. When cancellation path ks optimized by the LMS/RLS algorithm, the computation power is reduced while control performance Is maintained. The filtered-x LMS algorithm is used to minimize the error signal.