• 제목/요약/키워드: Optimized Network

검색결과 1,023건 처리시간 0.03초

Evaluation of Recurrent Neural Network Variants for Person Re-identification

  • Le, Cuong Vo;Tuan, Nghia Nguyen;Hong, Quan Nguyen;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.193-199
    • /
    • 2017
  • Instead of using only spatial features from a single frame for person re-identification, a combination of spatial and temporal factors boosts the performance of the system. A recurrent neural network (RNN) shows its effectiveness in generating highly discriminative sequence-level human representations. In this work, we implement RNN, three Long Short Term Memory (LSTM) network variants, and Gated Recurrent Unit (GRU) on Caffe deep learning framework, and we then conduct experiments to compare performance in terms of size and accuracy for person re-identification. We propose using GRU for the optimized choice as the experimental results show that the GRU achieves the highest accuracy despite having fewer parameters than the others.

Recognition of hand written Hangul by neural network

  • Song, Jeong-Young;Lee, Hee-Hyol;Choi, Won-Kyu;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.76-80
    • /
    • 1993
  • In this paper we discuss optimization of neural network parameters, such as inclination of the sigmoid function, the numbers of the input layer's units and the hidden layer's units, considering application to recognition of hand written Hangul. Hangul characters are composed of vowels and consonants, and basically classified to six patterns by their positions. Using these characteristics of Hangul, the pattern of a given character is determined by its peripheral distribution and the other features. After then, the vowels and the consonants are recognized by the optimized neural network. The constructed recognition system including a neural network is applied to non-learning Hangul written by some Korean people, which are the names randomly taken from Korean spiritual and cultural research institute.

  • PDF

진화 신경망을 이용한 도립진자 시스템의 안정화 제어기에 관한 연구 (A Study on the Stabilization Control of IP System Using Evolving Neural Network)

  • 박영식;이준탁;심영진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.383-394
    • /
    • 2001
  • The stabilization control of inverted pendulum (IP) system is difficult because of its nonlinearity and structural unstability. In this paper, an Evolving Neural Network Controller (ENNC) without Error Back Propagation (EBP) is presented. An ENNC is described simply by genetic representation using an encoding strategy for types and slope values of each active functions, biases, weights and so on. By an evolutionary programming which has three genetic operation; selection, crossover and mutation, the predetermine controller is optimally evolved by updating simultaneously the connection patterns and weights of the neural networks. The performances of the proposed ENNC(PENNC)are compared with the one of conventional optimal controller and the conventional evolving neural network controller (CENNC) through the simulation and experimental results. And we showed that the finally optimized PENNC was very useful in the stabilization control of an IP system.

  • PDF

MPEG-7 시각 기술자와 해마 신경망을 이용한 내용기반 검색 (Content-Based Retrieval using MPEG-7 Visual Descriptor and Hippocampal Neural Network)

  • 김영호;강대성
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1083-1087
    • /
    • 2005
  • As development of digital technology, many kinds of multimedia data are used variously and requirements for effective use by user are increasing. In order to transfer information fast and precisely what user wants, effective retrieval method is required. As existing multimedia data are impossible to apply the MPEG-1, MPEG-2 and MPEG-4 technologies which are aimed at compression, store and transmission. So MPEG-7 is introduced as a new technology for effective management and retrieval of multimedia data. In this paper, we extract content-based features using color descriptor among the MPEG-7 standardization visual descriptor, and reduce feature data applying PCA(Principal Components Analysis) technique. We model the cerebral cortex and hippocampal neural network in engineering domain, and team content-based feature vectors fast and apply the hippocampal neural network algorithm to compose of optimized feature. And then we present fast and precise retrieval effect when indexing and retrieving.

유전 알고리즘과 시간-주파수 지역화를 이용한 방사 기준 함수망의 초기 최적화 (Initial Optimization of the RBFN with Time-Frequency Localization Using Genetic Algorithm)

  • 김성주;서재용;김용택;조현찬;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.221-224
    • /
    • 2001
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part on the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization and genetic algorithm. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we have initial structure of RBFN, After that, we evaluate the parameters of RBF in the network and the parameters needed for the network is more a few. Finally, we make a good decision of the initial structure having an ability of approximation.

  • PDF

Torque Ripples Minimization of DTC IPMSM Drive for the EV Propulsion System using a Neural Network

  • Singh, Bhim;Jain, Pradeep;Mittal, A.P.;Gupta, J.R.P.
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.23-34
    • /
    • 2008
  • This paper deals with a Direct Torque Control (DTC) of an Interior Permanent Magnet Synchronous Motor (IPMSM) for the Electric Vehicle (EV) propulsion system using a Neural Network (NN). The Conventional DTC with optimized switching lookup table and three level torque controller generates relatively large torque ripples in an electric vehicle motor drive. For reducing the torque ripples, a three level torque controller is hereby replaced by the five level torque controller. Furthermore, the switching lookup table of the five level torque controller based DTC is replaced with a Neural Network. These DTC schemes of an IPMSM drive are simulated using MATLAB/SIMULINK. The simulated results are compared with the conventional DTC and it is found that the ripples in the torque, as well as in the stator current, are reduced drastically.

Time-Cost Trade-Off by Lead-Time Adjustment in the PDM Network

  • Kim, Seon-Gyoo
    • Architectural research
    • /
    • 제11권2호
    • /
    • pp.43-49
    • /
    • 2009
  • Since the late 1980s, the schedule technique applied to the construction industry around the world has rapidly changed from the traditional ADM (Arrow Diagramming Method) to the PDM (Precedence Diagramming Method) technique. The main reason for this change is to overcome the limits and inconveniences of the traditional ADM technique. The time-cost trade-off is one of the core scheduling techniques to establish the best optimized combination plan in terms of a relationship between the cost and schedule. However, most of the schedule-related textbooks and research papers have discussed and proposed applications of a time-cost trade-off technique based only on the Finish to Start relationship. Therefore, there are almost no consideration and discussion of problems or restrictions that emerge when the time-cost trade-off technique is applied to the PDM network that has overlapping relationships. This paper proposes the lead-time adjustment method as a methodology for overcoming some restrictions that are encountered when the time-cost trade-off technique is applied to the overlapping relationships of the PDM network.

최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉 (Visual servoing of robot manipulators using the neural network with optimal structure)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF

Cooperative Coordination Method of Neural Network Controller Module for Autonomous Mobile Robot Navigation

  • Joo, Han-Seong;Young, Oh-Se
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.178.3-178
    • /
    • 2001
  • This paper is concerned with designing a neural network based navigator that is optimized in a user-defined sense for a mobile robot using ultrasonic sensors to travel to a goal position safely and efficiently without any prior map of the environment. The neural network has a dynamically reconfigurable structure that not only can optimize the weights but also the input sensory connectivity in order to meet any user-defined objective. Therefore, in this research, we can select an optimal subset of sensory inputs that results in the best performance related to both navigation and structural complexity. Further, this research uses the manually trained initial population and the modular neural network to alleviate ...

  • PDF

역주문을 고려한 공정-저장조 망구조의 최적설계 (Optimal Design of Process-Inventory Network Considering Backordering Costs)

  • 이경범
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.750-755
    • /
    • 2014
  • Product shortage which causes backordering and/or lost sales cost is very popular in chemical industries, especially in commodity polymer business. This study deals with backordering cost in the supply chain optimization model under the framework of process-inventory network. Classical economic order quantity model with backordering cost suggested optimal time delay and lot size of the final product delivery. Backordering can be compensated by advancing production/transportation of it or purchasing substitute product from third party as well as product delivery delay in supply chain network. Optimal solutions considering all means to recover shortage are more complicated than the classical one. We found three different solutions depending on parametric range and variable bounds. Optimal capacity of production/transportation processes associated with the product in backordering can be different from that when the product is not in backordering. The product shipping cycle time computed in this study was smaller than that optimized by the classical EOQ model.