• 제목/요약/키워드: Optimization process

검색결과 4,797건 처리시간 0.034초

How Through-Process Optimization (TPO) Assists to Meet Product Quality

  • Klaus Jax;Yuyou Zhai;Wolfgang Oberaigner
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.131-138
    • /
    • 2024
  • This paper introduces Primetals Technologies' Through-Process Optimization (TPO) Services and Through-Process Quality Control (TPQC) System, which integrate domain knowledge, software, and automation expertise to assist steel producers in achieving operational excellence. TPQC collects high-resolution process and product data from the entire production route, providing visualizations and facilitating quality assurance. It also enables the application of artificial intelligence techniques to optimize processes, accelerate steel grade development, and enhance product quality. The main objective of TPO is to grow and digitize operational know-how, increase profitability, and better meet customer needs. The paper describes the contribution of these systems to achieving operational excellence, with a focus on quality assurance. Transparent and traceable production data is used for manual and automatic quality evaluation, resulting in product quality status and guiding the product disposition process. Deviation management is supported by rule-based and AI-based assistants, along with monitoring, alarming, and reporting functions ensuring early recognition of deviations. Embedded root cause proposals and their corrective and compensatory actions facilitate decision support to maintain product quality. Quality indicators and predictive quality models further enhance the efficiency of the quality assurance process. Utilizing the quality assurance software package, TPQC acts as a "one-truth" platform for product quality key players.

무빙부품의 과다 닫힘 방지를 위한 오버슬램 범퍼 최적설계 (Design Optimization of Over-slam Bumper for Moving Part Over-travel)

  • 최연욱;기원용;이종현;허승진;이철홍
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.66-72
    • /
    • 2014
  • A kinematic analysis method has been used as analysis method for dynamic behavior of moving parts of vehicle, especially hood part. Such analysis method, however, has its limitations in terms of design technology, including, over travel of hood that occurs due to lack of considerations of compliance characteristics, such as flexible components of hood's weather strip and over slam bumper. Therefore, it is necessary to develop a modeling which reflects compliance of flexible components of hood and elastic characteristics of panel for improvement of design process. In this thesis, a finite element method as mentioned earlier, is developed to represent over travel of hood. Also optimization process applying sequential approximate optimization is suggested to prevent over travel. The over travel analysis method and optimization process, which are developed through the research, would make it possible to design with high quality and credibility. Furthermore, it is expected that the time for design would be reduced and the design quality also improved.

핀테크 기반 주식투자 최적화 모델 구축 사례 연구 : 기관투자자 대상 (A Case Study on the Establishment of an Equity Investment Optimization Model based on FinTech: For Institutional Investors)

  • 김홍곤;김소담;김희웅
    • 지식경영연구
    • /
    • 제19권1호
    • /
    • pp.97-118
    • /
    • 2018
  • The finance-investment industry is currently focusing on research related to artificial intelligence and big data, moving beyond conventional theories of financial engineering. However, the case of equity optimization portfolio by using an artificial intelligence, big data, and its performance is rarely realized in practice. Thus, the purpose of this study is to propose process improvements in equity selection, information analysis, and portfolio composition, and lastly an improvement in portfolio returns, with the case of an equity optimization model based on quantitative research by an artificial intelligence. This paper is an empirical study of the portfolio based on an artificial intelligence technology of "D" asset management, which is the largest domestic active-quant-fiduciary management in accordance with the purpose of this paper. This study will apply artificial intelligence to finance, analyzing financial and demand-supply information and automating factor-selection and weight of equity through machine learning based on the artificial neural network. Also, the learning the process for the composition of portfolio optimization and its performance by applying genetic algorithms to models will be documented. This study posits a model that the asset management industry can achieve, with continuous and stable excess performance, low costs and high efficiency in the process of investment.

내구성을 고려한 하부 컨트롤 암의 구조설계 (Structural Design of a Front Lower Control Arm Considering Durability)

  • 박한석;김종규;서선민;이권희;박영철
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.69-75
    • /
    • 2009
  • Recently developed automotive components are getting lighter providing a higher fuel efficiency and performance. Following the current trend, this study proposes a structural optimization method for the lower control arm installed at the front side of a Vehicle. Lightweight design of lower control arm can be achieved through design and material technology. In this research, the shape of lower control arm was determined by applying the optimization technology and aluminum was selected as a steel-substitute material. Strength performance is the most important design requirement in the structural design of a control arm. This study considers the static strength in the optimization process. For the optimum design, the durability analysis is performed to predict its fatigue life. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint. Optimum designs are obtained by the in-house program, EXCEL-Kriging. Also, based on the optimum model obtained for the static strength, the optimization of Index of Fatigue Durability is carried out to get th optimum fatigue performance.

  • PDF

위상최적화 기법을 이용한 사출 금형 최적 설계 (A Study on Injection Mold Design Using Topology Optimization)

  • 김미진;최재혁;백경윤
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.100-106
    • /
    • 2022
  • Topology optimization is applied for the optimal design of various products to ensure weight reduction and productivity improvement. Reducing the weight of the mold while maintaining its rigidity can ensure shortening of the production cycle, stabilization of the mold temperature, and reduction of mold material costs. In this study, a topology optimization technique was applied to the optimal design of the injection mold, and a topology-optimized model of the mold was obtained. First, the injection mold for the square specimens was modeled. Subsequently, a structural analysis was performed by implementing a load condition generated during the injection molding process. Topology optimization was performed based on the structural analysis results, and the models of the initial and topology-optimized designs were manufactured at 1/4 magnification using a 3D printer. Consequently, compared with the existing model, the weight of the topology-optimized model decreased by 9.8%, and the manufacturing time decreased by 7.61%.

대화식 절차를 활용한 공정능력지수 기반 다중반응표면 최적화 (An Interactive Process Capability-Based Approach to Multi-Response Surface Optimization)

  • 정인준
    • 품질경영학회지
    • /
    • 제45권2호
    • /
    • pp.191-207
    • /
    • 2017
  • Purpose: To develop an interactive version of the conventional process capability-based approach, called 'Interactive Process Capability-Based Approach (IPCA)' in multi-response surface optimization to obtain a satisfactory compromise which incorporates a decision maker(DM)'s preference information precisely. Methods: The proposed IPCA consists of 4 steps. Step 1 is to obtain the estimated process capability indices and initialize the parameters. Step 2 is to maximize the overall process capability index. Step 3 is to evaluate the optimization results. If all the responses are satisfactory, the procedure stops with the most preferred compromise solution. Otherwise, it moves to Step 4. Step 4 is to adjust the preference parameters. The adjustment can be made in two modes: relaxation and tightening. The relaxation is to make the importance of one of the satisfactory responses lower, which is implemented by decreasing its weight. The tightening is to make the importance of one of the unsatisfactory responses higher, which is implemented by increasing its weight. Then, the procedure goes back to Step 2. If there is no response to be adjusted, it stops with the unsatisfactory compromise solution. Results: The proposed IPCA was illustrated through a multi-response surface problem, colloidal gas aphrons problem. The illustration shows that it can generate a satisfactory compromise through an interactive procedure which enables the DM to provide his or her preference information conveniently. Conclusion: The proposed IPCA has two major advantages. One is to obtain a satisfactory compromise which is faithful to the DM preference structure. The other is to make the DM's participation in the interactive procedure easier by using the process capability index in judging satisfaction/unsatisfaction. The process capability index is very familiar with quality practitioners as well as indicates the process performance levels numerically.

Off-line Multicritera Optimization of Creep Feed Ceramic Grinding Process

  • Chen Ming-Kuen
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
    • /
    • pp.680-695
    • /
    • 1998
  • The objective of this study is to optimize the responses of the creep feed ceramic grinding process simultaneously by an off-1ine multicriteria optimization methodology. The responses considered as objectives are material removal rate, flexural strength, normal grinding force, workpiece surface roughness and grinder power. Alumina material was ground by the creep feed grinding mode using superabrasive grinding wheels. The process variables optimized for the above objectives include grinding wheel specification, such as bond type, mesh size, and grit concentration, and grinding process parameters, such as depth of cut and feed rate. A weighting method transforms the multi-objective problem into a single-objective programming format and then, by parametric variation of weights, the set of non-dominated optimum solutions are obtained. Finally, the multi-objective optimization methodology was tested by a sensitivity analysis to check the stability of the model.

  • PDF

DOE 법에 의한 Ga 첨가된 ZnO 박막의 공정조건 탐색 (Process Optimization Approached by Design of Experiment Method for Ga-doped ZnO Thin Films)

  • 이득희;김상식;이상렬
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.108-112
    • /
    • 2010
  • Design of experiment (DOE) method is employed for a systematic and highly efficient optimization of Ga-doped ZnO thin films synthesized by pulsed laser deposition (PLD) process. We sequentially adopted fractional-factorial design (FD) and central composite design (CCD) of the DOE methods. In fractional-FD stage, significant factors to make conductive electrode are found to target-substrate (T-S) distance and oxygen partial pressure. Moreover, correlation among the process factors is elucidated using surface profile modeling. Electrical properties of the GZO films grown on a glass substrate had been optimized to find that the lowest electrical resistivity of about $1.8'10^{-4}Wcm$ which was acquired with the T-S distance and the oxygen pressure of 4 cm and 7 mTorr, respectively. During the DOE-fueled optimization process, the transparency of the GZO films is ensured higher than 85 %.

다구찌 기법을 이용한 용사코팅의 공정 최적화 (Optimization for Thermal spray Process by Taguchi Method)

  • 김균택;김영식
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.54-59
    • /
    • 2012
  • In the present study, process optimization for thermal-sprayed Ni-based alloy coating has been performed using Taguchi method and analysis of variance(ANOVA). Ni-based alloy coatings were fabricated by flame spray process on steel substrate, and the hardness test and wear test were performed. Experiments were designed as per Taguchi's L9 orthogonal array and tests were conducted with different Oxygen gas flow, Acetylene gas flow, Powder feed rate and Spray distance. Multi response signal to noise ratio (MRSN) was calculated for the response variables and the optimum combination level of factors was obtained simultaneously using Taguchi's parametric design.

다구찌 기법에 의한 코발트기 자융성합금 용사코팅의 최적공정 설계 (Process Optimization for Co-based Self-flux Alloy Coating by Taguchi Method)

  • 이재홍;김영식
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.108-114
    • /
    • 2013
  • This paper describes process optimization for thermal-sprayed Co-based self-flux alloy coating by Taguchi method. Co-based self-flux alloy coatings were fabricated according to $L_9(3^4)$ orthogonal array using flame spray process. Hardness test and wear test were performed, the results were analyzed by analysis of variance(ANOVA) considering a multi response signal to noise ratio(MRSN). From the results of ANOVA, the optimal combination of the flame spray parameters on Co-based self-flux alloy coating could be predicted. The calculated hardness and wear rate of the coatings by ANOVA were found to be close to that of confirmation experimental result.