• 제목/요약/키워드: Optimization process

검색결과 4,762건 처리시간 0.033초

불확정성을 고려한 적층판 결합공정의 강건최적설계 (A Study on Robust Design Optimization of Layered Plates Bonding Process Considering Uncertainties)

  • 이우혁;박정진;최주호;이수용
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.113-120
    • /
    • 2007
  • Design optimization of layered plates bonding process is conducted by considering uncertainties in a manufacturing process, in order to reduce the crack failure arising due to the residual stress at the surface of the adherent which is caused by different thermal expansion coefficients. Robust optimization is peformed to minimize the mean as well as its variance of the residual stress, while constraining the distortion as well as the instantaneous maximum stress under the allowable reliability limits. In this optimization, the dimension reduction (DR) method is employed to quantify the reliability such as mean and variance of the layered plate bonding. It is expected that the DR method benefits the optimization from the perspectives of efficiency, accuracy, and simplicity. The obtained robust optimal solution is verified by the Monte Carlo simulation.

시뮬레이션 최적화 기법과 절삭공정에의 응용 (Simulation Optimization Methods with Application to Machining Process)

  • 양병희
    • 한국시뮬레이션학회논문지
    • /
    • 제3권2호
    • /
    • pp.57-67
    • /
    • 1994
  • For many practical and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. In this paper, with discussion of simulation optimization techniques, a case study in machining process for application of simulation optimization is presented. Most of optimization techniques can be classified as single-or multiple-response techniques. The optimization of single-response category, these strategies are gradient based search methods, stochastic approximate method, response surface method, and heuristic search methods. In the multiple-response category, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphical method, direct search method, constrained optimization, unconstrained optimization, and goal programming methods. The choice of the procedure to employ in simulation optimization depends on the analyst and the problem to be solved.

  • PDF

A new swarm intelligent optimization algorithm: Pigeon Colony Algorithm (PCA)

  • Yi, Ting-Hua;Wen, Kai-Fang;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.425-448
    • /
    • 2016
  • In this paper, a new Pigeon Colony Algorithm (PCA) based on the features of a pigeon colony flying is proposed for solving global numerical optimization problems. The algorithm mainly consists of the take-off process, flying process and homing process, in which the take-off process is employed to homogenize the initial values and look for the direction of the optimal solution; the flying process is designed to search for the local and global optimum and improve the global worst solution; and the homing process aims to avoid having the algorithm fall into a local optimum. The impact of parameters on the PCA solution quality is investigated in detail. There are low-dimensional functions, high-dimensional functions and systems of nonlinear equations that are used to test the global optimization ability of the PCA. Finally, comparative experiments between the PCA, standard genetic algorithm and particle swarm optimization were performed. The results showed that PCA has the best global convergence, smallest cycle indexes, and strongest stability when solving high-dimensional, multi-peak and complicated problems.

반응표면법을 이용한 스틸코드의 롤러교정기 설계 최적화 (Design Optimization of Roller Straightening Process for Steel Cord using Response Surface Methodology)

  • 이종섭;허훈;이준우;배종구;김득태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.238-241
    • /
    • 2007
  • A roller straightening process is a metal forming technique to improve the geometric quality of products such as straightness and flatness. The geometrical quality can be enhanced by eliminating unnecessary deformations produced during upstream manufacturing processes and minimizing any detrimental internal stress during the roller straightening process. The quality of steel cords can be achieved by the roller straightening depends the process parameters. Such process parameters are the roll intermesh, the roll pitch, the diameter of rolls, the number of rolls and the applied tension. This paper is concerned with the design optimization of the roller straightening process for steel cords with the aid of elasto-plastic finite element analysis. Effects of the process parameters on the straightness of the steel cord are investigated by the finite element analysis. Based on the analysis results, the optimization of the roller straightening process is performed by the response surface method. The roller straightening process using optimum design parameters is carried out in order to confirm the quality of the final products.

  • PDF

절삭가공의 Neural Network 모델을 위한 ACO 및 PSO의 응용 (Application of Ant Colony Optimization and Particle Swarm Optimization for Neural Network Model of Machining Process)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.36-43
    • /
    • 2019
  • Turning, a main machining process, is a widespread process in metal cutting industries. Many researchers have investigated the effects of process parameters on the machining process. In the turning process, input variables including cutting speed, feed, and depth of cut are generally used. Surface roughness and electric current consumption are used as output variables in this study. We construct a simulation model for the turning process using a neural network, which predicts the output values based on input values. In the neural network, obtaining the appropriate set of weights, which is called training, is crucial. In general, back propagation (BP) is widely used for training. In this study, techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) as well as BP were used to obtain the weights in the neural network. Particularly, two combined techniques of ACO_BP and PSO_BP were utilized for training the neural network. Finally, the performances of the two techniques are compared with each other.

등가정하중을 이용한 튜브 하이드로포밍 공정 최적설계에 관한 기초연구 (Preliminary Study on Optimization of the Tube Hydroforming Process Using the Equivalent Static Loads)

  • 장환학;박경진;김태경
    • 대한기계학회논문집A
    • /
    • 제39권3호
    • /
    • pp.259-268
    • /
    • 2015
  • 본 논문은 등가정하중을 이용하여 튜브 하이드로포밍 공정을 위한 최적설계를 제안한다. 튜브 하이드로포밍 공정의 최적설계는 유체의 압력과 축 방향 압입량에 대한 적절한 하중경로를 결정하고, 이를 통하여 성형해석 후 결함이 없는 원하는 형상의 제품을 얻는 것을 목적으로 한다. 그러나 기존의 등가정하중법은 하중을 설계변수로 고려하지 못한다. 또한 튜브 하이드로포밍 공정의 최적설계에서 고려하는 비선형 두께 응답을 고려하기 위한 최적화가 필요하다. 따라서 본 연구에서는 튜브 하이드로포밍 공정의 최적설계에 적합한 새로운 등가정하중을 제시한다. 또한 새로운 등가정하중을 이용한 최적설계 프로세스를 제시한다. 제시한 최적설계방법의 사용 가능성은 예제를 통하여 확인한다.

Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구 (Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis)

  • 이현규;이정수;김동화;조진수
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

모델을 이용한 증류공정의 최적화 방안 (A model based scheme of on-line optimization in distillation process)

  • 김흥식;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.240-245
    • /
    • 1990
  • A on-line optimization scheme based on model in a binary distillation process is proposed. A reduced-order model utilized the concept of collocation is used as a process model and the recursive prediction error method is employed to identify the reduced-order model. The concentrations of end products are controlled by nonlinear adaptive predictive control algorithm. The objective function is constructed to find optimum operate condition for saving utility cost. The proposed optimization is scheme is tested through simulation studies in 13-staged water-methanol distillation column.

  • PDF

비례하중변환법의 등가정하중을 이용한 비선형 거동을 하는 구조물의 최적설계 (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads by Proportional Transformation of Loads)

  • 박기종;권용덕;송기남;박경진
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.66-75
    • /
    • 2006
  • Nonlinear response structural optimization using equivalent static loads (NROESL) has been proposed. Nonlinear response optimization is solved by sequential linear response optimization with equivalent static loads which are generated from the nonlinear responses and linear stiffness matrix. The linear stiffness matrix should be obtained in NROESL, and this process can be fairly difficult for some applications. Proportional transformation of loads (PTL) is proposed to overcome the difficulties. Equivalent static loads are obtained by PTL. It is the same as NROESL except for the process of calculating equivalent static loads. PTL is developed for large-scale probems. First, linear and nonlinear responses are evaluated from linear and nonlinear analyses, respectively. At a DOF of the finite element method, the ratio of the two responses is calculated and an equivalent static load is made by multiplying the ratio and the loads for linear analysis. Therefore, the mumber of the equivalent static loads is as many as that of DOF's and an equivalent static load is used with the reponse for the corresponding DOF in the optimization process. All the equivalent static loads are used as multiple loading conditions during linear response optimization. The process iterates until it converges. Examples are solved by using the proposed method and the results are compared with conventional methods.

DACE 모델을 이용한 게이트밸브 단조공정의 최적설계화 (Optimization of Forging Process of Gate Valve using DACE Model)

  • 오승환;공형걸;강정호;박영철
    • 한국기계가공학회지
    • /
    • 제6권1호
    • /
    • pp.71-77
    • /
    • 2007
  • In case of the welding process, a conventional production method of gate valve, it has a merit of light weight, but also a demerit of high production cost and an impossibility in mass production due to work by hand. However, in case of the forging process, it has economic merits and can take a mass production process, too. The main focus of this paper is the optimization of preform in the forging process. This paper proposed an optimal design to improve the mechanical efficiency of gate valve made by forging method instead of welding. the optional design is conducted as application of real response model to Kriging model using computer simulation. Also, from verification of the response model with optimized results we were confirmed that the applications of Kriging method to structural optimum design using finite element analysis and equation are useful and reliable.

  • PDF