• Title/Summary/Keyword: Optimization problems

Search Result 2,426, Processing Time 0.027 seconds

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei;Xu Shuo;Wang Qi;Xin Zhong Xin;Wei Hua Yong;Ma Feng Lin
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.117-126
    • /
    • 2024
  • There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

Image-Based Machine Learning Model for Malware Detection on LLVM IR (LLVM IR 대상 악성코드 탐지를 위한 이미지 기반 머신러닝 모델)

  • Kyung-bin Park;Yo-seob Yoon;Baasantogtokh Duulga;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.31-40
    • /
    • 2024
  • Recently, static analysis-based signature and pattern detection technologies have limitations due to the advanced IT technologies. Moreover, It is a compatibility problem of multiple architectures and an inherent problem of signature and pattern detection. Malicious codes use obfuscation and packing techniques to hide their identity, and they also avoid existing static analysis-based signature and pattern detection techniques such as code rearrangement, register modification, and branching statement addition. In this paper, We propose an LLVM IR image-based automated static analysis of malicious code technology using machine learning to solve the problems mentioned above. Whether binary is obfuscated or packed, it's decompiled into LLVM IR, which is an intermediate representation dedicated to static analysis and optimization. "Therefore, the LLVM IR code is converted into an image before being fed to the CNN-based transfer learning algorithm ResNet50v2 supported by Keras". As a result, we present a model for image-based detection of malicious code.

Optimization of Ultrasound-Assisted Pretreatment for Accelerating Rehydration of Adzuki Bean (Vigna angularis)

  • Hyengseop Kim;Changgeun Lee;Eunghee Kim;Youngje Jo;Jiyoon Park;Choongjin Ban;Seokwon Lim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.846-853
    • /
    • 2024
  • Adzuki bean (Vigna angularis), which provides plant-based proteins and functional substances, requires a long soaking time during processing, which limits its usefulness to industries and consumers. To improve this, ultrasonic treatment using high pressure and shear force was judged to be an appropriate pretreatment method. This study aimed to determine the optimal conditions of ultrasound treatment for the improved hydration of adzuki beans using the response surface methodology (RSM). Independent variables chosen to regulate the hydration process of the adzuki beans were the soaking time (2-14 h, X1), treatment intensity (150-750 W, X2), and treatment time (1-10 min, X3). Dependent variables chosen to assess the differences in the beans post-immersion were moisture content, water activity, and hardness. The optimal conditions for treatment deduced through RSM were a soaking time of 12.9 h, treatment intensity of 600 W, and treatment time of 8.65 min. In this optimal condition, the values predicted for the dependent variables were a moisture content of 58.32%, water activity of 0.9979 aw, and hardness of 14.63 N. Upon experimentation, the results obtained were a moisture content of 58.28 ± 0.56%, water activity of 0.9885 ± 0.0040 aw, and hardness of 13.01 ± 2.82 g, confirming results similar to the predicted values. Proper ultrasound treatment caused cracks in the hilum, which greatly affects the water absorption of adzuki beans, accelerating the rate of hydration. These results are expected to help determine economically efficient processing conditions for specific purposes, in addition to solving industrial problems associated with the low hydration rate of adzuki beans.

Optimum Design of LB-DECK Plate Girder Bridge (LB-DECK 플레이트 합성 거더교의 최적설계)

  • Kim, Ki-Wook;Park, Moon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.135-142
    • /
    • 2008
  • This study is concerned with the optimum design of LB-Deck plate girder bridge. The optimizing problems of the composite bridge are formulated with objective functions and constraints. The objective functions are formulated as the total cost of the concrete deck and steel girder construction and the constraints are derived by criteria with respect to the Korean Highway bridge design. The optimizing algorithm using SUMT for optimum design of the Simple span, 2-Span, 3-span LB-deck plate and general RC-steel composite girder bridges (L=60m) which act live load(DB24). And their optimum numerical results are compares and analyzed to examine the possibility of optimization, the application and convergency of this optimizing algorithm.

A Genetic Algorithm for Production Scheduling of Biopharmaceutical Contract Manufacturing Products (바이오의약품 위탁생산 일정계획 수립을 위한 유전자 알고리즘)

  • Ji-Hoon Kim;Jeong-Hyun Kim;Jae-Gon Kim
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.141-152
    • /
    • 2024
  • In the biopharmaceutical contract manufacturing organization (CMO) business, establishing a production schedule that satisfies the due date for various customer orders is crucial for competitiveness. In a CMO process, each order consists of multiple batches that can be allocated to multiple production lines in small batch units for parallel production. This study proposes a meta-heuristic algorithm to establish a scheduling plan that minimizes the total delivery delay of orders in a CMO process with identical parallel machine. Inspired by biological evolution, the proposed algorithm generates random data structures similar to chromosomes to solve specific problems and effectively explores various solutions through operations such as crossover and mutation. Based on real-world data provided by a domestic CMO company, computer experiments were conducted to verify that the proposed algorithm produces superior scheduling plans compared to expert algorithms used by the company and commercial optimization packages, within a reasonable computation time.

Intelligent Optimal Route Planning Based on Context Awareness (상황인식 기반 지능형 최적 경로계획)

  • Lee, Hyun-Jung;Chang, Yong-Sik
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

Applications of Fuzzy Theory on The Location Decision of Logistics Facilities (퍼지이론을 이용한 물류단지 입지 및 규모결정에 관한 연구)

  • 이승재;정창무;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.75-85
    • /
    • 2000
  • In existing models in optimization, the crisp data improve has been used in the objective or constraints to derive the optimal solution, Besides, the subjective environments are eliminated because the complex and uncertain circumstances were regarded as Probable ambiguity, In other words those optimal solutions in the existing models could be the complete satisfactory solutions to the objective functions in the Process of application for industrial engineering methods to minimize risks of decision-making. As a result of those, decision-makers in location Problems couldn't face appropriately with the variation of demand as well as other variables and couldn't Provide the chance of wide selection because of the insufficient information. So under the circumstance. it has been to develop the model for the location and size decision problems of logistics facility in the use of the fuzzy theory in the intention of making the most reasonable decision in the Point of subjective view under ambiguous circumstances, in the foundation of the existing decision-making problems which must satisfy the constraints to optimize the objective function in strictly given conditions in this study. Introducing the Process used in this study after the establishment of a general mixed integer Programming(MIP) model based upon the result of existing studies to decide the location and size simultaneously, a fuzzy mixed integer Programming(FMIP) model has been developed in the use of fuzzy theory. And the general linear Programming software, LINDO 6.01 has been used to simulate, to evaluate the developed model with the examples and to judge of the appropriateness and adaptability of the model(FMIP) in the real world.

  • PDF

Object Tracking Based on Exactly Reweighted Online Total-Error-Rate Minimization (정확히 재가중되는 온라인 전체 에러율 최소화 기반의 객체 추적)

  • JANG, Se-In;PARK, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2019
  • Object tracking is one of important steps to achieve video-based surveillance systems. Object tracking is considered as an essential task similar to object detection and recognition. In order to perform object tracking, various machine learning methods (e.g., least-squares, perceptron and support vector machine) can be applied for different designs of tracking systems. In general, generative methods (e.g., principal component analysis) were utilized due to its simplicity and effectiveness. However, the generative methods were only focused on modeling the target object. Due to this limitation, discriminative methods (e.g., binary classification) were adopted to distinguish the target object and the background. Among the machine learning methods for binary classification, total error rate minimization can be used as one of successful machine learning methods for binary classification. The total error rate minimization can achieve a global minimum due to a quadratic approximation to a step function while other methods (e.g., support vector machine) seek local minima using nonlinear functions (e.g., hinge loss function). Due to this quadratic approximation, the total error rate minimization could obtain appropriate properties in solving optimization problems for binary classification. However, this total error rate minimization was based on a batch mode setting. The batch mode setting can be limited to several applications under offline learning. Due to limited computing resources, offline learning could not handle large scale data sets. Compared to offline learning, online learning can update its solution without storing all training samples in learning process. Due to increment of large scale data sets, online learning becomes one of essential properties for various applications. Since object tracking needs to handle data samples in real time, online learning based total error rate minimization methods are necessary to efficiently address object tracking problems. Due to the need of the online learning, an online learning based total error rate minimization method was developed. However, an approximately reweighted technique was developed. Although the approximation technique is utilized, this online version of the total error rate minimization could achieve good performances in biometric applications. However, this method is assumed that the total error rate minimization can be asymptotically achieved when only the number of training samples is infinite. Although there is the assumption to achieve the total error rate minimization, the approximation issue can continuously accumulate learning errors according to increment of training samples. Due to this reason, the approximated online learning solution can then lead a wrong solution. The wrong solution can make significant errors when it is applied to surveillance systems. In this paper, we propose an exactly reweighted technique to recursively update the solution of the total error rate minimization in online learning manner. Compared to the approximately reweighted online total error rate minimization, an exactly reweighted online total error rate minimization is achieved. The proposed exact online learning method based on the total error rate minimization is then applied to object tracking problems. In our object tracking system, particle filtering is adopted. In particle filtering, our observation model is consisted of both generative and discriminative methods to leverage the advantages between generative and discriminative properties. In our experiments, our proposed object tracking system achieves promising performances on 8 public video sequences over competing object tracking systems. The paired t-test is also reported to evaluate its quality of the results. Our proposed online learning method can be extended under the deep learning architecture which can cover the shallow and deep networks. Moreover, online learning methods, that need the exact reweighting process, can use our proposed reweighting technique. In addition to object tracking, the proposed online learning method can be easily applied to object detection and recognition. Therefore, our proposed methods can contribute to online learning community and object tracking, detection and recognition communities.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Optimization of the Truss Structures Using Member Stress Approximate method (응력근사해법(應力近似解法)을 이용한 평면(平面)트러스구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;You, Hee Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1993
  • In this research, configuration design optimization of plane truss structure has been tested by using decomposition technique. In the first level, the problem of transferring the nonlinear programming problem to linear programming problem has been effectively solved and the number of the structural analysis necessary for doing the sensitivity analysis can be decreased by developing stress constraint into member stress approximation according to the design space approach which has been proved to be efficient to the sensitivity analysis. And the weight function has been adopted as cost function in order to minimize structures. For the design constraint, allowable stress, buckling stress, displacement constraint under multi-condition and upper and lower constraints of the design variable are considered. In the second level, the nodal point coordinates of the truss structure are used as coordinating variable and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, unconstrained optimal design problems are easy to solve. The decomposition method which optimize the section areas in the first level and optimize configuration variables in the second level was applied to the plane truss structures. The numerical comparisons with results which are obtained from numerical test for several truss structures with various shapes and any design criteria show that convergence rate is very fast regardless of constraint types and configuration of truss structures. And the optimal configuration of the truss structures obtained in this study is almost the identical one from other results. The total weight couldbe decreased by 5.4% - 15.4% when optimal configuration was accomplished, though there is some difference.

  • PDF