• 제목/요약/키워드: Optimization problems

Search Result 2,436, Processing Time 0.032 seconds

Improvement of Search Efficiency in Optimization Algorithm using Self-adaptive Harmony Search Algorithms (매개변수 자가적응 화음탐색 알고리즘의 성능 비교를 통한 최적해 탐색 효율 향상)

  • Choi, Young Hwan;Lee, Ho Min;Yoo, Do Guen;Kim, Joong Hoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In various engineering fields, determining the appropriate parameter set is a cumbersome and difficult task when solving optimization problems. Despite the appropriate parameter setting through parameter sensitivity analysis, there are limits to evaluating whether the parameters are appropriate for all optimization problems. For this reason, kinds of a Self-adaptive Harmony searches have been developed to solve various engineering problems by the appropriate setting of algorithm's own parameters according to the problem. In this study, various types of Self-adaptive Harmony searches were investigated and the characteristics of optimization were categorized. Six algorithms with a differentiation of optimization process were applied and compared with not only the mathematical optimization problem, but also the engineering problem, which has been applied widely in the algorithm performance comparisons. The performance of each algorithm was compared, and the statistical performance indicators were used to evaluate the application results quantitatively.

Fruit Fly Optimization based EEG Channel Selection Method for BCI (BCI 시스템을 위한 Fruit Fly Optimization 알고리즘 기반 최적의 EEG 채널 선택 기법)

  • Yu, Xin-Yang;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.199-203
    • /
    • 2016
  • A brain-computer interface or BCI provides an alternative method for acting on the world. Brain signals can be recorded from the electrical activity along the scalp using an electrode cap. By analyzing the EEG, it is possible to determine whether a person is thinking about his/her hand or foot movement and this information can be transferred to a machine and then translated into commands. However, we do not know which information relates to motor imagery and which channel is good for extracting features. A general approach is to use all electronic channels to analyze the EEG signals, but this causes many problems, such as overfitting and problems removing noisy and artificial signals. To overcome these problems, in this paper we used a new optimization method called the Fruit Fly optimization algorithm (FOA) to select the best channels and then combine them with CSP method to extract features to improve the classification accuracy by linear discriminant analysis. We also used particle swarm optimization (PSO) and a genetic algorithm (GA) to select the optimal EEG channel and compared the performance with that of the FOA algorithm. The results show that for some subjects, the FOA algorithm is a better method for selecting the optimal EEG channel in a short time.

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

ON SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR VECTOR OPTIMIZATION PROBLEMS

  • Lee, Gue-Myung;Kim, Moon-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.287-305
    • /
    • 2003
  • Second order necessary optimality condition for properly efficient solutions of a twice differentiable vector optimization problem is given. We obtain a nonsmooth version of the second order necessary optimality condition for properly efficient solutions of a nondifferentiable vector optimization problem. Furthermore, we prove a second order necessary optimality condition for weakly efficient solutions of a nondifferentiable vector optimization problem.

Structural Design Optimization of Dynamic Crack Propagation Problems Using Peridynamics (페리다이나믹스를 이용한 균열진전 문제의 구조 최적설계)

  • Kim, Jae-Hyun;Park, Soomin;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Based on a bond-based peridynamics theory for dynamic crack propagation problems, this paper presents a design sensitivity analysis and optimization method. Peridynamics has a peculiar advantage over the existing continuum theory in the mathematical modelling of problems where discontinuities arise. For the design optimization of the crack propagation problems, a non-shape design sensitivity is derived using the adjoint variable method. The obtained adjoint sensitivity of displacement and strain energy turns out to be very accurate and efficient compared to the finite different sensitivity. The obtained design sensitivities are futher utilized to optimally control the position of bifurcation point in the design optimization of crack propagation in a plate under tension. A numerical experiment demonstrates that the optimal distribution of material density could delay the position of bifurcation.

Effects of Latin hypercube sampling on surrogate modeling and optimization

  • Afzal, Arshad;Kim, Kwang-Yong;Seo, Jae-won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.240-253
    • /
    • 2017
  • Latin hypercube sampling is widely used design-of-experiment technique to select design points for simulation which are then used to construct a surrogate model. The exploration/exploitation properties of surrogate models depend on the size and distribution of design points in the chosen design space. The present study aimed at evaluating the performance characteristics of various surrogate models depending on the Latin hypercube sampling (LHS) procedure (sample size and spatial distribution) for a diverse set of optimization problems. The analysis was carried out for two types of problems: (1) thermal-fluid design problems (optimizations of convergent-divergent micromixer coupled with pulsatile flow and boot-shaped ribs), and (2) analytical test functions (six-hump camel back, Branin-Hoo, Hartman 3, and Hartman 6 functions). The three surrogate models, namely, response surface approximation, Kriging, and radial basis neural networks were tested. The important findings are illustrated using Box-plots. The surrogate models were analyzed in terms of global exploration (accuracy over the domain space) and local exploitation (ease of finding the global optimum point). Radial basis neural networks showed the best overall performance in global exploration characteristics as well as tendency to find the approximate optimal solution for the majority of tested problems. To build a surrogate model, it is recommended to use an initial sample size equal to 15 times the number of design variables. The study will provide useful guidelines on the effect of initial sample size and distribution on surrogate construction and subsequent optimization using LHS sampling plan.

GA-VNS-HC Approach for Engineering Design Optimization Problems (공학설계 최적화 문제 해결을 위한 GA-VNS-HC 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2022
  • In this study, a hybrid meta-heuristic approach is proposed for solving engineering design optimization problems. Various approaches in many literatures have been proposed to solve engineering optimization problems with various types of decision variables and complex constraints. Unfortunately, however, their efficiencies for locating optimal solution do not be highly improved. Therefore, we propose a hybrid meta-heuristic approach for improving their weaknesses. the proposed GA-VNS-HC approach is combining genetic algorithm (GA) for global search with variable neighborhood search (VNS) and hill climbing (HC) for local search. In case study, various types of engineering design optimization problems are used for proving the efficiency of the proposed GA-VNS-HC approach

Optimization of thin shell structures subjected to thermal loading

  • Li, Qing;Steven, Grant P.;Querin, O.M.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.401-412
    • /
    • 1999
  • The purpose of this paper is to show how the Evolutionary Structural Optimization (ESO) algorithm developed by Xie and Steven can be extended to optimal design problems of thin shells subjected to thermal loading. This extension simply incorporates an evolutionary iterative process of thermoelastic thin shell finite element analysis. During the evolution process, lowly stressed material is gradually eliminated from the structure. This paper presents a number of examples to demonstrate the capabilities of the ESO algorithm for solving topology optimization and thickness distribution problems of thermoelastic thin shells.

Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems (열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계)

  • 김민근;조선호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF