DUALITY THEOREM AND VECTOR SADDLE POINT THEOREM FOR ROBUST MULTIOBJECTIVE OPTIMIZATION PROBLEMS

Moon Hee Kim

ABSTRACT. In this paper, Mond-Weir type duality results for a uncertain multiobjective robust optimization problem are given under generalized invexity assumptions. Also, weak vector saddle-point theorems are obtained under convexity assumptions.

1. Introduction

Consider an uncertain multiobjective robust optimization problem:

(MRP) minimize
$$(f_1(x), \dots, f_l(x))$$

subject to $g_j(x, v_j) \leq 0, \ \forall v_j \in \mathcal{V}_j, \ j = 1, \dots, m,$

where v_i is an uncertain parameter and $v_i \in \mathcal{V}_i$ for some convex compact set \mathcal{V}_i in \mathbb{R}^q , $f_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., l and $g_j : \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}$, j = 1, ..., m are continuously differentiable.

When l=1, (MRP) becomes an uncertain optimization problem, which has been intensively studied in ([4]-[5], [6]), associates with the uncertain program (UP) its robust counterpart [1],

(RP)
$$\inf_{x \in \mathbb{R}^n} \{ f(x) : g_i(x, v_i) \le 0, \ \forall v_i \in \mathcal{V}_i, \ i = 1, \dots, m \},$$

where the uncertain constraints are enforced for every possible value of the parameters within their prescribed uncertainty sets \mathcal{V}_i , $i=1,\ldots,m$. Recently, Jeyakumar, Li and Lee [7] established a robust duality theory for generalized convex programming problems in the face of data uncertainty. Furthermore, Kim [8] extended results of Jeyakumar, Li and Lee [7] for a uncertain multiobjective robust optimization problem. In this paper, Mond-Weir type duality results for a uncertain multiobjective robust optimization problem are given

Received March 30, 2012.

 $^{2010\} Mathematics\ Subject\ Classification.\ 90C25,\ 90C30.$

Key words and phrases. robust multiobjective optimization, robust weakly efficient solution, necessary optimality theorem, Mond-Weir type robust duality.

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MEST) (No. 2011-0018619).

under generalized invexity assumptions. Also, weak vector saddle-point theorems are obtained under convexity assumptions.

Let F be the set of all the robust feasible solutions of (MRP) and $J(\bar{x}) = \{j \mid \exists v_j \in \mathcal{V}_j \text{ s.t. } g_j(\bar{x}, v_j) = 0, j = 1, \dots, m\}.$

Definition 1.1. A robust feasible solution \bar{x} of (MRP) is a weakly robust efficient solution of (MRP) if there does not exist a robust feasible solution x of (MRP) such that

$$f_i(x) < f_i(\bar{x}), \quad i = 1, \dots, l.$$

Definition 1.2. (1) A vector-valued function f is said to be generalized η -quasi-invex at $(x^*, v_j) \in F \times \mathcal{V}_j$ for each $x \in \mathbb{R}^n$ there exist $\alpha_i : \mathbb{R}^n \times \mathbb{R}^n \to (0, +\infty)$, $i = 1, \ldots, l, \eta : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ such that for each $x \in \mathbb{R}^n$,

$$f_i(x) \le f_i(x^*) \Rightarrow \alpha_i(x, x^*) \nabla f_i(x^*)^T \eta(x, x^*) \le 0.$$

(2) A vector-valued function f is said to be generalized η -pseudo-invex at $(x^*, v_j) \in F \times \mathcal{V}_j$ for each $x \in \mathbb{R}^n$ there exist $\alpha_i : \mathbb{R}^n \times \mathbb{R}^n \to (0, +\infty), \ i = 1, \ldots, l, \ \eta : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ such that for each $x \in \mathbb{R}^n$,

$$\alpha_i(x, x^*) \nabla f_i(x^*)^T \eta(x, x^*) \ge 0 \implies f_i(x) \ge f_i(x^*).$$

Now we define an Extended Mangasarian-Fromovitz constraint qualification for (MRP) as follows:

There exists $d \in \mathbb{R}^n$ such that for any $j \in J(\bar{x})$ and any $v_j \in \mathcal{V}_j$,

$$\nabla_1 g_i(\bar{x}, v_i)^T d < 0.$$

Now we present necessary optimality theorems for weakly robust efficient solutions for (MRP).

Theorem 1.1 ([9]). Let $\bar{x} \in F$ be a weakly robust efficient solution of (MRP). Suppose that $g_j(\bar{x},\cdot)$ are concave on \mathcal{V}_j , $j=1,\ldots,m$. Then there exist $\lambda_i \geq 0$, $i=1,\ldots,l$, $\mu_j \geq 0$, $j=1,\ldots,m$, not all zero, and $\bar{v}_j \in \mathcal{V}_j$, $j=1,\ldots,m$ such that

(1)
$$\sum_{i=1}^{l} \lambda_i \nabla f_i(\bar{x}) + \sum_{j=1}^{m} \mu_j \nabla_1 g_j(\bar{x}, \bar{v}_j) = 0,$$

(2)
$$\mu_j g_j(\bar{x}, \bar{v}_j) = 0, \ j = 1, \dots, m.$$

Moreover, if we further assume that the Extended Mangasarian-Fromovitz constraint qualification holds, then there exist $\lambda_i \geq 0$, i = 1, ..., l, not all zero, $\mu_j \geq 0$, j = 1, ..., m, and $\bar{v}_j \in \mathcal{V}_j$, j = 1, ..., m such that (1) and (2) hold.

2. Duality results

In this section, we establish Mond-Weir type robust duality between (MRP) and (MD).

(MD) maximize
$$(f_1(u), \ldots, f_l(u))$$

subject to
$$\sum_{i=1}^{l} \lambda_{i} \nabla f_{i}(u) + \sum_{j=1}^{m} \mu_{j} \nabla_{1} g_{j}(u, v_{j}) = 0,$$

 $\mu_{j} g_{j}(u, v_{j}) \geq 0, \ j = 1, \dots, m,$
 $\lambda_{i} \geq 0, \ i = 1, \dots, l, \ \sum_{i=1}^{l} \lambda_{i} = 1,$
 $\mu_{j} \geq 0, \ v_{j} \in \mathcal{V}_{j}, \ j = 1, \dots, m.$

Theorem 2.1 (Weak Duality). Let x be feasible for (MRP) and $(\bar{x}, \bar{v}, \lambda, \mu)$ be feasible for (MD). Suppose that $f_i(\cdot), i = 1, ..., l$ are generalized η -quasi-invex at \bar{x} and $\mu_j g_j(\cdot, \bar{v}_j)$, j = 1, ..., m are generalized strictly η -pseudo-invex at \bar{x} and $g_j(\bar{x}, \cdot)$ are concave on \mathcal{V}_j . Then

$$(f_1(x),\ldots,f_l(x)) \not< (f_1(\bar{x}),\ldots,f_l(\bar{x})).$$

Proof. Let x be feasible for (MRP) and $(\bar{x}, \bar{v}, \lambda, \mu)$ be feasible for (MD). Suppose that $f_i(x) < f_i(\bar{x}), \ i = 1, \dots, l$. Then the η -quasi-invexity of $f_i(\cdot)$ at \bar{x} implies that

$$\eta(x,\bar{x})^T \nabla f_i(\bar{x}) < 0, \ i = 1,\dots,l.$$

Since $g_j(x, \bar{v}_j) \le 0$, $\bar{v}_j \in V_j, \mu_j \ge 0$, $\mu_j g_j(x, \bar{v}_j) \le 0$, j = 1, ..., m,

$$\mu_j g_j(x, \bar{v}_j) \le \mu_j g_j(\bar{x}, \bar{v}_j), \ j = 1, \dots, m.$$

Thus the strictly η -pseudo-invexity of $\mu_j g_j(\cdot, \bar{v}_j)$, $j = 1, \ldots, m$ at \bar{x} implies that

$$\eta(x,\bar{x})^T \mu_i \nabla_1 g_i(\bar{x},\bar{v}_i) < 0, \ j = 1,\dots, m.$$

Hence $\lambda_i \ge 0$, $i = 1, \dots, l$, $\sum_{i=1}^{l} \lambda_i = 1$,

$$\eta(x,\bar{x})^T \Big[\sum_{i=1}^l \lambda_i \nabla f_i(\bar{x}) + \sum_{i=1}^m \mu_j \nabla_1 g_j(\bar{x},\bar{v}_j) \Big]^T < 0.$$

This is a contradiction, since $\sum_{i=1}^{l} \lambda_i \nabla f_i(\bar{x}) + \sum_{j=1}^{m} \mu_j \nabla_1 g_j(\bar{x}, \bar{v}_j) = 0.$

Theorem 2.2 (Strong Duality). Let \bar{x} be a weakly efficient solution of (MRP). Assume that the Extended Mangasarian-Fromovitz constraint qualification holds. Then, there exists $(\bar{v}, \bar{\lambda}, \bar{\mu})$ such that $(\bar{x}, \bar{v}, \bar{\lambda}, \bar{\mu})$ is feasible for (MD) and the objective values of (MRP) and (MD) are equal. If $f_i(\cdot)$, $i=1,\ldots,l$ are η -quasi-invex at \bar{x} , $\bar{\mu}_j g_j(\cdot, \bar{v}_j)$, $j=1,\ldots,m$ are strictly η -pseudo-invex at \bar{x} , and $g_j(\bar{x}, \cdot)$ are concave on \mathcal{V}_j , $j=1,\ldots,m$, then $(\bar{x}, \bar{v}, \bar{\lambda}, \bar{\mu})$ is a weakly efficient solution of (MD).

Proof. Since \bar{x} is a weakly efficient solution of (MRP) at which the Extended Mangasarian-Fromovitz constraint qualification is satisfied, then by Theorem

1.1, there exist $\bar{\lambda}_i \geq 0$, i = 1, ..., l, not all zero, $\bar{\mu}_j \geq 0$, j = 1, ..., m, and $\bar{v}_j \in \mathcal{V}_j$, j = 1, ..., m, such that

$$\sum_{i=1}^{l} \bar{\lambda}_{i} \nabla f_{i}(\bar{x}) + \sum_{j=1}^{m} \bar{\mu}_{j} \nabla_{1} g_{j}(\bar{x}, \bar{v}_{j}) = 0,$$
$$\bar{\mu}_{i} g_{j}(\bar{x}, \bar{v}_{j}) = 0, \ j = 1, \dots, m.$$

Thus $(\bar{x}, \bar{v}, \bar{\lambda}, \bar{\mu})$ is feasible for (MD) and clearly the objective values of (MRP) and (MD) are equal. If $(\bar{x}, \bar{v}, \bar{\lambda}, \bar{\mu})$ is weak duality holds, then there exists feasible $(\tilde{x}, \tilde{v}, \tilde{\lambda}, \tilde{\mu})$ for (MD) such that

$$(f_i(\bar{x}),\ldots,f_l(\bar{x})) \not< (f_1(\tilde{x}),\ldots,f_l(\tilde{x})).$$

Hence $(\bar{x}, \bar{v}, \bar{\lambda}, \bar{\mu})$ is a (MD)-feasible solution, $(\bar{x}, \bar{v}, \bar{\lambda}, \bar{\mu})$ is a weakly efficient solution of (MD).

3. Weak vector saddle-point theorems

In this section, we prove weak vector saddle-point theorems for multiobjective robust optimization problem (MRP). Let

$$L(x, w, \mu) = f(x) + \mu^{T} g(x, w)e,$$

where $x \in \mathbb{R}^n$, $w \in \mathcal{V}$, $\mu \in \mathbb{R}^m_+$ and $e = (1, ..., 1) \in \mathbb{R}^l$. Then, a point $(\bar{x}, \bar{w}, \bar{\mu}) \in \mathbb{R}^n \times \mathcal{V} \times \mathbb{R}^m_+$ is said to be a weak vector saddle-point if

$$L(x, \bar{w}, \bar{\mu}) \not < L(\bar{x}, \bar{w}, \bar{\mu}) \not < L(\bar{x}, w, \mu)$$

for all $x \in \mathbb{R}^n$, $w \in \mathcal{V}$, $\mu \in \mathbb{R}^m_+$.

Theorem 3.1. Let $(\bar{x}, \bar{\lambda}, \bar{w}, \bar{\mu})$ satisfy (1) and (2). Suppose that $f_i(\cdot)$, $i = 1, \ldots, l$ and $g_j(\cdot, \bar{w}_j)$, $j = 1, \ldots, m$ are convex and $g_j(\bar{x}, \cdot)$ are concave on \mathcal{V}_j . Then $(\bar{x}, \bar{w}, \bar{\mu})$ is a weak vector saddle-point of (MRP).

Proof. If (1) and (2) are true. Then there exist $\bar{\lambda} \in \mathbb{R}^l_+$, $\bar{w} \in \mathcal{V}$ and $\bar{\mu} \in \mathbb{R}^m_+$ such that

(3)
$$\sum_{i=1}^{l} \bar{\lambda}_{i} \nabla f_{i}(\bar{x}) + \sum_{j=1}^{m} \bar{\mu}_{j} \nabla_{1} g_{j}(\bar{x}, \bar{w}_{j}) = 0$$
$$\bar{\mu}_{j} g_{j}(\bar{x}, \bar{w}_{j}) = 0, \ j = 1, \dots, m.$$

Let $x \in \mathbb{R}^n$ be any fixed. Then $f_i(\cdot)$, i = 1, ..., l and $g_j(\cdot, \bar{w}_j)$, j = 1, ..., m are convex,

$$f_i(x) - f_i(\bar{x}) \ge \nabla f_i(\bar{x})^T (x - \bar{x}),$$

$$g_j(x, \bar{w}_j) - g_j(\bar{x}, \bar{w}_j) \ge \nabla_1 g_j(\bar{x}, \bar{w}_j)^T (x - \bar{x}).$$

Since
$$\bar{\lambda}_i \ge 0$$
, $i = 1, ..., l$, $\sum_{i=1}^{l} \lambda_i = 1$, $\bar{\mu}_j \ge 0$, $j = 1, ..., m$,

$$\bar{\lambda}_i \Big\{ f_i(x) - f_i(\bar{x}) \Big\} \ge \bar{\lambda}_i \nabla f_i(\bar{x})^T (x - \bar{x}), \ i = 1, \dots, l,$$

$$\sum_{i=1}^{l} \bar{\lambda}_{i} \Big\{ \bar{\mu}_{j} g_{j}(x, \bar{w}_{j}) - \bar{\mu}_{j} g_{j}(\bar{x}, \bar{w}_{j}) \Big\} \ge \sum_{i=1}^{l} \bar{\lambda}_{i} \bar{\mu}_{j} \nabla_{1} g_{j}(\bar{x}, \bar{w}_{j})^{T} (x - \bar{x}), \ j = 1, \dots, m.$$

Summing up all these inequalities, it follows from (3) that

$$\sum_{i=1}^{l} \bar{\lambda}_{i} \Big\{ f(x) + \sum_{j=1}^{m} \bar{\mu}_{j} g_{j}(x, \bar{w}_{j}) \Big\} - \sum_{i=1}^{l} \bar{\lambda}_{i} \Big\{ f(\bar{x}) + \sum_{j=1}^{m} \bar{\mu}_{j} g_{j}(\bar{x}, \bar{w}_{j}) \Big\}$$

$$\geq \Big\{ \sum_{i=1}^{l} \bar{\lambda}_{i} \nabla f_{i}(\bar{x}) + \sum_{j=1}^{m} \bar{\mu}_{j} \nabla_{1} g_{j}(\bar{x}, \bar{w}_{j}) \Big\}^{T} (x - \bar{x})$$

$$= 0.$$

Since $\bar{\lambda}_i \geq 0$, not all zero,

$$f(x) + \bar{\mu}^T g(x, \bar{w}) e \not< f(\bar{x}) + \bar{\mu}^T g(\bar{x}, \bar{w}) e$$
 for any $x \in \mathbb{R}^n$,

i.e., $L(x, \bar{w}, \bar{\mu}) \not< L(\bar{x}, \bar{w}, \bar{\mu})$ for any $x \in \mathbb{R}^n$.

Now, since $\bar{\mu}^T g(\bar{x}, \bar{w}) = 0$, $\mu^T g(x, w) \leq 0$ for any $\mu \in \mathbb{R}^m_+$, $w \in \mathcal{V}$,

$$\bar{\mu}^T g(\bar{x}, \bar{w}) - \mu^T g(x, \bar{w}) \ge 0$$
 for any $\mu \in \mathbb{R}_+^m$.

Thus

$$f(\bar{x}) + \bar{\mu}^T g(\bar{x}, \bar{w})e - \left\{ f(\bar{x}) + \mu^T g(x, w)e \right\} \in \mathbb{R}^l_+,$$

and hence

$$L(\bar{x}, \bar{w}, \bar{\mu}) \not< L(\bar{x}, w, \mu).$$

Therefore, $(\bar{x}, \bar{w}, \bar{\mu})$ is a weak vector saddle-point of (MRP).

Corollary 3.1. Suppose that $f_i(\cdot)$, $i=1,\ldots,l$ and $g_j(\cdot,\bar{w}_j)$, $j=1,\ldots,m$ are convex and $g_j(\bar{x},\cdot)$ are concave on \mathcal{V}_j . If \bar{x} is a weakly efficient solution of (MRP) at which the Extended Mangasarian-Fromovitz constraint qualification is satisfied, then there exists $(\bar{v},\bar{\lambda},\bar{\mu})$ such that $(\bar{x},\bar{v},\bar{\lambda},\bar{\mu})$ is a weak vector saddle-point of (MRP).

Theorem 3.2. If there exists $\bar{\mu} \in \mathbb{R}^m_+$ such that $(\bar{x}, \bar{w}, \bar{\mu})$ is a weak vector saddle-point of (MRP), then \bar{x} is a weakly efficient solution of (MRP).

Proof. Let $(\bar{x}, \bar{w}, \bar{\mu})$ be a weak vector saddle-point of (MRP). From the right inequality of saddle-point conditions,

$$f(\bar{x}) + \bar{\mu}^T g(\bar{x}, \bar{w})e \not< f(\bar{x}) + \mu^T g(\bar{x}, w)e$$

for any $\mu \in \mathbb{R}^m_+$. Thus

$$\bar{\mu}^T g(\bar{x}, \bar{w}) e \not< \mu^T g(\bar{x}, w) e$$

for any $\mu \in \mathbb{R}^m_+$, $w \in \mathcal{V}$ and hence we have

(4)
$$\bar{\mu}^T g(\bar{x}, \bar{w}) \ge \mu^T g(\bar{x}, w)$$
 for any $\mu \in \mathbb{R}^m_+$, $w \in \mathcal{V}$.

Letting $\mu=0$ in (4), $\bar{\mu}^T g(\bar{x},\bar{w}) \geq 0$. Letting $\mu=2\bar{\mu}$ in (4), $w_i=\bar{w}_i$, $\bar{\mu}^T g(\bar{x},\bar{w}) \leq 0$. Therefore,

$$\bar{\mu}^T g(\bar{x}, \bar{w}) = 0.$$

Now, from the left inequality of saddle-point conditions and $\bar{\mu}^T g(\bar{x}, \bar{w}) = 0$, we have, for any feasible solution x of (MRP), $f(x) \not< f(\bar{x})$. Hence \bar{x} is a weakly efficient solution of (MRP).

References

- [1] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski, *Robust Optimization*, Princeton Series in Applied Mathematics, 2009.
- [2] A. Ben-Tal and A. Nemirovski, Robust-optimization-methodology and applications, Math. Program. Ser B 92 (2002), no. 3, 453–480.
- [3] ______, Selected topics in robust convex optimization, Math. Program. Ser B 112 (2008), no. 1, 125–158.
- [4] D. Bertsimas and D. Brown, Constructing uncertainty sets for robust linear optimization, Oper. Res. 57 (2009), no. 6, 1483–1495.
- [5] D. Bertsimas, D. Pachamanova, and M. Sim, Robust linear optimization under general norms, Oper. Res. Lett. 32 (2004), no. 6, 510–516.
- [6] V. Jeyakumar, G. Li, and G. M. Lee, A robust von Neumann minimax theorem for zero-sum games under bounded payoff uncertainty, Oper. Res. Lett. 39 (2011), no. 2, 109–114.
- [7] _____, Robust duality for generalized convex programming problems under data uncertainty, Nonlinear Anal. 75 (2012), no. 3, 1362–1373.
- [8] M. H. Kim, Robust duality for generalized invex programming problems, submitted.
- $[9]\,$ D. Kuroiwa and G. M. Lee, On robust multiobjective optimization, submitted.

SCHOOL OF FREE MAJOR TONGMYONG UNIVERSITY

Busan 608-711, Korea

E-mail address: mooni@tu.ac.kr