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DUALITY THEOREM AND VECTOR SADDLE POINT

THEOREM FOR ROBUST MULTIOBJECTIVE

OPTIMIZATION PROBLEMS

Moon Hee Kim

Abstract. In this paper, Mond-Weir type duality results for a uncertain
multiobjective robust optimization problem are given under generalized
invexity assumptions. Also, weak vector saddle-point theorems are ob-
tained under convexity assumptions.

1. Introduction

Consider an uncertain multiobjective robust optimization problem:

(MRP) minimize (f1(x), . . . , fl(x))

subject to gj(x, vj) <= 0, ∀vj ∈ Vj , j = 1, . . . ,m,

where vi is an uncertain parameter and vi ∈ Vi for some convex compact set
Vi in R

q, fi : R
n → R, i = 1, . . . , l and gj : Rn × R

q → R, j = 1, . . . ,m are
continuously differentiable.

When l = 1, (MRP) becomes an uncertain optimization problem, which has
been intensively studied in ([4]-[5], [6]), associates with the uncertain program
(UP) its robust counterpart [1],

(RP) inf
x∈Rn

{f(x) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m},

where the uncertain constraints are enforced for every possible value of the
parameters within their prescribed uncertainty sets Vi, i = 1, . . . ,m. Recently,
Jeyakumar, Li and Lee [7] established a robust duality theory for generalized
convex programming problems in the face of data uncertainty. Furthermore,
Kim [8] extended results of Jeyakumar, Li and Lee [7] for a uncertain multi-
objective robust optimization problem. In this paper, Mond-Weir type duality
results for a uncertain multiobjective robust optimization problem are given
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under generalized invexity assumptions. Also, weak vector saddle-point theo-
rems are obtained under convexity assumptions.

Let F be the set of all the robust feasible solutions of (MRP) and J(x̄) =
{j | ∃vj ∈ Vj s.t. gj(x̄, vj) = 0, j = 1, . . . ,m}.

Definition 1.1. A robust feasible solution x̄ of (MRP) is a weakly robust
efficient solution of (MRP) if there does not exist a robust feasible solution x

of (MRP) such that

fi(x) < fi(x̄), i = 1, . . . , l.

Definition 1.2. (1) A vector-valued function f is said to be generalized η-
quasi-invex at (x∗, vj) ∈ F × Vj for each x ∈ R

n there exist αi : R
n × R

n →
(0,+∞), i = 1, . . . , l, η : Rn × R

n → R
n such that for each x ∈ R

n,

fi(x) <= fi(x
∗) ⇒ αi(x, x

∗)∇fi(x
∗)T η(x, x∗) <= 0.

(2) A vector-valued function f is said to be generalized η-pseudo-invex at
(x∗, vj) ∈ F × Vj for each x ∈ R

n there exist αi : R
n × R

n → (0,+∞), i =
1, . . . , l, η : Rn × R

n → R
n such that for each x ∈ R

n,

αi(x, x
∗)∇fi(x

∗)T η(x, x∗) >= 0 ⇒ fi(x) >= fi(x
∗).

Now we define an Extended Mangasarian-Fromovitz constraint qualification
for (MRP) as follows:

There exists d ∈ R
n such that for any j ∈ J(x̄) and any vj ∈ Vj ,

∇1gj(x̄, vj)
T d < 0.

Now we present necessary optimality theorems for weakly robust efficient
solutions for (MRP).

Theorem 1.1 ([9]). Let x̄ ∈ F be a weakly robust efficient solution of (MRP).
Suppose that gj(x̄, ·) are concave on Vj , j = 1, . . . ,m. Then there exist λi >=
0, i = 1, . . . , l, µj >= 0, j = 1, . . . ,m, not all zero, and v̄j ∈ Vj , j = 1, . . . ,m
such that

l∑

i=1

λi∇fi(x̄) +

m∑

j=1

µj∇1gj(x̄, v̄j) = 0,(1)

µjgj(x̄, v̄j) = 0, j = 1, . . . ,m.(2)

Moreover, if we further assume that the Extended Mangasarian-Fromovitz con-

straint qualification holds, then there exist λi >= 0, i = 1, . . . , l, not all zero,

µj >= 0, j = 1, . . . ,m, and v̄j ∈ Vj , j = 1, . . . ,m such that (1) and (2) hold.

2. Duality results

In this section, we establish Mond-Weir type robust duality between (MRP)
and (MD).

(MD) maximize
(
f1(u), . . . , fl(u)

)



DUALITY THEOREM AND VECTOR SADDLE POINT THEOREM 599

subject to

l∑

i=1

λi∇fi(u) +

m∑

j=1

µj∇1gj(u, vj) = 0,

µjgj(u, vj) ≥ 0, j = 1, . . . ,m,

λi ≥ 0, i = 1, . . . , l,

l∑

i=1

λi = 1,

µj ≥ 0, vj ∈ Vj , j = 1, . . . ,m.

Theorem 2.1 (Weak Duality). Let x be feasible for (MRP) and (x̄, v̄, λ, µ) be
feasible for (MD). Suppose that fi(·), i = 1, . . . , l are generalized η-quasi-invex

at x̄ and µjgj(·, v̄j), j = 1, . . . ,m are generalized strictly η-pseudo-invex at x̄

and gj(x̄, ·) are concave on Vj. Then

(
f1(x), . . . , fl(x)

)
6<

(
f1(x̄), . . . , fl(x̄)

)
.

Proof. Let x be feasible for (MRP) and (x̄, v̄, λ, µ) be feasible for (MD). Suppose
that fi(x) < fi(x̄), i = 1, . . . , l. Then the η-quasi-invexity of fi(·) at x̄ implies
that

η(x, x̄)T∇fi(x̄) < 0, i = 1, . . . , l.

Since gj(x, v̄j) <= 0, v̄j ∈ Vj , µj >= 0, µjgj(x, v̄j) <= 0, j = 1, . . . ,m,

µjgj(x, v̄j) <= µjgj(x̄, v̄j), j = 1, . . . ,m.

Thus the strictly η-pseudo-invexity of µjgj(·, v̄j), j = 1, . . . ,m at x̄ implies that

η(x, x̄)Tµj∇1gj(x̄, v̄j) < 0, j = 1, . . . ,m.

Hence λi >= 0, i = 1, . . . , l,
∑l

i=1
λi = 1,

η(x, x̄)T
[ l∑

i=1

λi∇fi(x̄) +
m∑

j=1

µj∇1gj(x̄, v̄j)
]T

< 0.

This is a contradiction, since
∑l

i=1
λi∇fi(x̄) +

∑m

j=1
µj∇1gj(x̄, v̄j) = 0. �

Theorem 2.2 (Strong Duality). Let x̄ be a weakly efficient solution of (MRP).
Assume that the Extended Mangasarian-Fromovitz constraint qualification

holds. Then, there exists (v̄, λ̄, µ̄) such that (x̄, v̄, λ̄, µ̄) is feasible for (MD)
and the objective values of (MRP) and (MD) are equal. If fi(·), i = 1, . . . , l
are η-quasi-invex at x̄, µ̄jgj(·, v̄j), j = 1, . . . ,m are strictly η-pseudo-invex at

x̄, and gj(x̄, ·) are concave on Vj, j = 1, . . . ,m, then (x̄, v̄, λ̄, µ̄) is a weakly

efficient solution of (MD).

Proof. Since x̄ is a weakly efficient solution of (MRP) at which the Extended
Mangasarian-Fromovitz constraint qualification is satisfied, then by Theorem
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1.1, there exist λ̄i >= 0, i = 1, . . . , l, not all zero, µ̄j >= 0, j = 1, . . . ,m, and
v̄j ∈ Vj, j = 1, . . . ,m, such that

l∑

i=1

λ̄i∇fi(x̄) +

m∑

j=1

µ̄j∇1gj(x̄, v̄j) = 0,

µ̄jgj(x̄, v̄j) = 0, j = 1, . . . ,m.

Thus (x̄, v̄, λ̄, µ̄) is feasible for (MD) and clearly the objective values of (MRP)
and (MD) are equal. If (x̄, v̄, λ̄, µ̄) is weak duality holds, then there exists

feasible (x̃, ṽ, λ̃, µ̃) for (MD) such that
(
fi(x̄), . . . , fl(x̄)

)
6<

(
f1(x̃), . . . , fl(x̃)

)
.

Hence (x̄, v̄, λ̄, µ̄) is a (MD)-feasible solution, (x̄, v̄, λ̄, µ̄) is a weakly efficient
solution of (MD). �

3. Weak vector saddle-point theorems

In this section, we prove weak vector saddle-point theorems for multiobjec-
tive robust optimization problem (MRP). Let

L(x,w, µ) = f(x) + µT g(x,w)e,

where x ∈ R
n, w ∈ V , µ ∈ R

m
+ and e = (1, . . . , 1) ∈ R

l. Then, a point
(x̄, w̄, µ̄) ∈ R

n × V × R
m
+ is said to be a weak vector saddle-point if

L(x, w̄, µ̄) 6< L(x̄, w̄, µ̄) 6< L(x̄, w, µ)

for all x ∈ R
n, w ∈ V , µ ∈ R

m
+ .

Theorem 3.1. Let (x̄, λ̄, w̄, µ̄) satisfy (1) and (2). Suppose that fi(·), i =
1, . . . , l and gj(·, w̄j), j = 1, . . . ,m are convex and gj(x̄, ·) are concave on Vj.

Then (x̄, w̄, µ̄) is a weak vector saddle-point of (MRP).

Proof. If (1) and (2) are true. Then there exist λ̄ ∈ R
l
+, w̄ ∈ V and µ̄ ∈ R

m
+

such that
l∑

i=1

λ̄i∇fi(x̄) +
m∑

j=1

µ̄j∇1gj(x̄, w̄j) = 0(3)

µ̄jgj(x̄, w̄j) = 0, j = 1, . . . ,m.

Let x ∈ R
n be any fixed. Then fi(·), i = 1, . . . , l and gj(·, w̄j), j = 1, . . . ,m

are convex,

fi(x) − fi(x̄) ≥ ∇fi(x̄)
T (x− x̄),

gj(x, w̄j)− gj(x̄, w̄j) ≥ ∇1gj(x̄, w̄j)
T (x− x̄).

Since λ̄i >= 0, i = 1, . . . , l,
∑l

i=1
λi = 1, µ̄j >= 0, j = 1, . . . ,m,

λ̄i

{
fi(x) − fi(x̄)

}
>= λ̄i∇fi(x̄)

T (x− x̄), i = 1, . . . , l,



DUALITY THEOREM AND VECTOR SADDLE POINT THEOREM 601

l∑

i=1

λ̄i

{
µ̄jgj(x, w̄j)−µ̄jgj(x̄, w̄j)

}
>=

l∑

i=1

λ̄iµ̄j∇1gj(x̄, w̄j)
T (x−x̄), j = 1, . . . ,m.

Summing up all these inequalities, it follows from (3) that

l∑

i=1

λ̄i

{
f(x) +

m∑

j=1

µ̄jgj(x, w̄j)
}
−

l∑

i=1

λ̄i

{
f(x̄) +

m∑

j=1

µ̄jgj(x̄, w̄j)
}

>=

{ l∑

i=1

λ̄i∇fi(x̄) +
m∑

j=1

µ̄j∇1gj(x̄, w̄j)
}T

(x − x̄)

= 0.

Since λ̄i >= 0, not all zero,

f(x) + µ̄T g(x, w̄)e 6< f(x̄) + µ̄T g(x̄, w̄)e for any x ∈ R
n,

i.e., L(x, w̄, µ̄) 6< L(x̄, w̄, µ̄) for any x ∈ R
n.

Now, since µ̄T g(x̄, w̄) = 0, µT g(x,w) <= 0 for any µ ∈ R
m
+ , w ∈ V ,

µ̄T g(x̄, w̄)− µT g(x, w̄) >= 0 for any µ ∈ R
m
+ .

Thus
f(x̄) + µ̄T g(x̄, w̄)e −

{
f(x̄) + µT g(x,w)e

}
∈ R

l
+,

and hence
L(x̄, w̄, µ̄) 6< L(x̄, w, µ).

Therefore, (x̄, w̄, µ̄) is a weak vector saddle-point of (MRP). �

Corollary 3.1. Suppose that fi(·), i = 1, . . . , l and gj(·, w̄j), j = 1, . . . ,m
are convex and gj(x̄, ·) are concave on Vj. If x̄ is a weakly efficient solution of

(MRP) at which the Extended Mangasarian-Fromovitz constraint qualification

is satisfied, then there exists (v̄, λ̄, µ̄) such that (x̄, v̄, λ̄, µ̄) is a weak vector

saddle-point of (MRP).

Theorem 3.2. If there exists µ̄ ∈ R
m
+ such that (x̄, w̄, µ̄) is a weak vector

saddle-point of (MRP), then x̄ is a weakly efficient solution of (MRP).

Proof. Let (x̄, w̄, µ̄) be a weak vector saddle-point of (MRP). From the right
inequality of saddle-point conditions,

f(x̄) + µ̄T g(x̄, w̄)e 6< f(x̄) + µT g(x̄, w)e

for any µ ∈ R
m
+ . Thus

µ̄T g(x̄, w̄)e 6< µT g(x̄, w)e

for any µ ∈ R
m
+ , w ∈ V and hence we have

µ̄T g(x̄, w̄) >= µT g(x̄, w) for any µ ∈ R
m
+ , w ∈ V .(4)

Letting µ = 0 in (4), µ̄T g(x̄, w̄) >= 0. Letting µ = 2µ̄ in (4), wi = w̄i,
µ̄T g(x̄, w̄) <= 0. Therefore,

µ̄T g(x̄, w̄) = 0.
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Now, from the left inequality of saddle-point conditions and µ̄T g(x̄, w̄) = 0, we
have, for any feasible solution x of (MRP), f(x) 6< f(x̄). Hence x̄ is a weakly
efficient solution of (MRP). �
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