• Title/Summary/Keyword: Optimization parameter

Search Result 1,553, Processing Time 0.026 seconds

Regionalization of rainfall-runoff model parameters based on the correlation of regional characteristic factors (지역특성인자의 상호연관성을 고려한 강우-유출모형 매개변수 지역화)

  • Kim, Jin-Guk;Sumyia, Uranchimeg;Kim, Tae-Jeong;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.955-968
    • /
    • 2021
  • A water resource plan is routinely based on a natural flow and can be estimated using observed streamflow data or a long-term continuous rainfall-runoff model. However, the watershed with the natural flow is very limited to the upstream area of the dam. In particular, for the ungauged watershed, a rainfall-runoff model is established for the gauged watershed, and the model is then applied to the ungauged watershed by transferring the associated parameters. In this study, the GR4J rainfall-runoff model is mainly used to regionalize the parameters that are estimated from the 14 dam watershed via an optimization process. In terms of optimizing the parameters, the Bayesian approach was applied to consider the uncertainty of parameters quantitatively, and a number of parameter samples obtained from the posterior distribution were used for the regionalization. Here, the relationship between the estimated parameters and the topographical factors was first identified, and the dependencies between them are effectively modeled by a Copula function approach to obtain the regionalized parameters. The predicted streamflow with the use of regionalized parameters showed a good agreement with that of the observed with a correlation of about 0.8. It was found that the proposed regionalized framework is able to effectively simulate streamflow for the ungauged watersheds by the use of the regionalized parameters, along with the associated uncertainty, informed by the basin characteristics.

A Study on the Cerber-Type Ransomware Detection Model Using Opcode and API Frequency and Correlation Coefficient (Opcode와 API의 빈도수와 상관계수를 활용한 Cerber형 랜섬웨어 탐지모델에 관한 연구)

  • Lee, Gye-Hyeok;Hwang, Min-Chae;Hyun, Dong-Yeop;Ku, Young-In;Yoo, Dong-Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.363-372
    • /
    • 2022
  • Since the recent COVID-19 Pandemic, the ransomware fandom has intensified along with the expansion of remote work. Currently, anti-virus vaccine companies are trying to respond to ransomware, but traditional file signature-based static analysis can be neutralized in the face of diversification, obfuscation, variants, or the emergence of new ransomware. Various studies are being conducted for such ransomware detection, and detection studies using signature-based static analysis and behavior-based dynamic analysis can be seen as the main research type at present. In this paper, the frequency of ".text Section" Opcode and the Native API used in practice was extracted, and the association between feature information selected using K-means Clustering algorithm, Cosine Similarity, and Pearson correlation coefficient was analyzed. In addition, Through experiments to classify and detect worms among other malware types and Cerber-type ransomware, it was verified that the selected feature information was specialized in detecting specific ransomware (Cerber). As a result of combining the finally selected feature information through the above verification and applying it to machine learning and performing hyper parameter optimization, the detection rate was up to 93.3%.

Proposal of a Pilot Plant (2T/day) for Solid Fuel Conversion of Cambodian Mango Waste Using Hybrid Hydrothermal Carbonization Technology (하이브리드 수열탄화기술을 이용한 캄보디아 망고 폐기물 고형연료화 실증플랜트 (2T/day) 제안)

  • Han, Jong-il;Lee, Kangsoo;Kang, Inkook
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • Hybrid hydrothermal carbonization (Hybrid HTC) technology is a proprietary thermochemical process for two or more organic wastes.The reaction time is less than two hours with temperature range 180~250℃ and pressure range 20~40bar. Thanks to accumulation of the carbon of the waste during Hybrid HTC process, the energy value of the solid fuel increases significantly with comparatively low energy consumption. It has also a great volume reduction with odor removal effect so that it is evaluated as the best solid fuel conversion technology for various organic wastes. In this study of the hybrid hydrothermal carbonization, the effect on the calorific value and yield of Cambodian mango waste were evaluated according to changes in temperature and reaction time. Through the study, parameter optimization has been sought with improving energy efficiency of the whole plant. It is decomposed in the Hydro-Carbonation Technology to Generate Gas. At this time, it is possible to develop manufacturing and production technologies such as hydrogen (H2) and methane (CH4). Based on the results of the study, a pilot plant (2t/day) has been proposed for future commercialization purpose along cost analysis, mass balance and energy balance calculations.

Optimization of Approximate Modular Multiplier for R-LWE Cryptosystem (R-LWE 암호화를 위한 근사 모듈식 다항식 곱셈기 최적화)

  • Jae-Woo, Lee;Youngmin, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.736-741
    • /
    • 2022
  • Lattice-based cryptography is the most practical post-quantum cryptography because it enjoys strong worst-case security, relatively efficient implementation, and simplicity. Ring learning with errors (R-LWE) is a public key encryption (PKE) method of lattice-based encryption (LBC), and the most important operation of R-LWE is the modular polynomial multiplication of rings. This paper proposes a method for optimizing modular multipliers based on approximate computing (AC) technology, targeting the medium-security parameter set of the R-LWE cryptosystem. First, as a simple way to implement complex logic, LUT is used to omit some of the approximate multiplication operations, and the 2's complement method is used to calculate the number of bits whose value is 1 when converting the value of the input data to binary. We propose a total of two methods to reduce the number of required adders by minimizing them. The proposed LUT-based modular multiplier reduced both speed and area by 9% compared to the existing R-LWE modular multiplier, and the modular multiplier using the 2's complement method reduced the area by 40% and improved the speed by 2%. appear. Finally, the area of the optimized modular multiplier with both of these methods applied was reduced by up to 43% compared to the previous one, and the speed was reduced by up to 10%.

Heat transfer analysis in sub-channels of rod bundle geometry with supercritical water

  • Shitsi, Edward;Debrah, Seth Kofi;Chabi, Silas;Arthur, Emmanuel Maurice;Baidoo, Isaac Kwasi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.842-848
    • /
    • 2022
  • Parametric studies of heat transfer and fluid flow are very important research of interest because the design and operation of fluid flow and heat transfer systems are guided by these parametric studies. The safety of the system operation and system optimization can be determined by decreasing or increasing particular fluid flow and heat transfer parameter while keeping other parameters constant. The parameters that can be varied in order to determine safe and optimized system include system pressure, mass flow rate, heat flux and coolant inlet temperature among other parameters. The fluid flow and heat transfer systems can also be enhanced by the presence of or without the presence of particular effects including gravity effect among others. The advanced Generation IV reactors to be deployed for large electricity production, have proven to be more thermally efficient (approximately 45% thermal efficiency) than the current light water reactors with a thermal efficiency of approximately 33 ℃. SCWR is one of the Generation IV reactors intended for electricity generation. High Performance Light Water Reactor (HPLWR) is a SCWR type which is under consideration in this study. One-eighth of a proposed fuel assembly design for HPLWR consisting of 7 fuel/rod bundles with 9 coolant sub-channels was the geometry considered in this study to examine the effects of system pressure and mass flow rate on wall and fluid temperatures. Gravity effect on wall and fluid temperatures were also examined on this one-eighth fuel assembly geometry. Computational Fluid Dynamics (CFD) code, STAR-CCM+, was used to obtain the results of the numerical simulations. Based on the parametric analysis carried out, sub-channel 4 performed better in terms of heat transfer because temperatures predicted in sub-channel 9 (corner subchannel) were higher than the ones obtained in sub-channel 4 (central sub-channel). The influence of system mass flow rate, pressure and gravity seem similar in both sub-channels 4 and 9 with temperature distributions higher in sub-channel 9 than in sub-channel 4. In most of the cases considered, temperature distributions (for both fluid and wall) obtained at 25 MPa are higher than those obtained at 23 MPa, temperature distributions obtained at 601.2 kg/h are higher than those obtained at 561.2 kg/h, and temperature distributions obtained without gravity effect are higher than those obtained with gravity effect. The results show that effects of system pressure, mass flowrate and gravity on fluid flow and heat transfer are significant and therefore parametric studies need to be performed to determine safe and optimum operating conditions of fluid flow and heat transfer systems.

Deep Learning Similarity-based 1:1 Matching Method for Real Product Image and Drawing Image

  • Han, Gi-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.59-68
    • /
    • 2022
  • This paper presents a method for 1:1 verification by comparing the similarity between the given real product image and the drawing image. The proposed method combines two existing CNN-based deep learning models to construct a Siamese Network. After extracting the feature vector of the image through the FC (Fully Connected) Layer of each network and comparing the similarity, if the real product image and the drawing image (front view, left and right side view, top view, etc) are the same product, the similarity is set to 1 for learning and, if it is a different product, the similarity is set to 0. The test (inference) model is a deep learning model that queries the real product image and the drawing image in pairs to determine whether the pair is the same product or not. In the proposed model, through a comparison of the similarity between the real product image and the drawing image, if the similarity is greater than or equal to a threshold value (Threshold: 0.5), it is determined that the product is the same, and if it is less than or equal to, it is determined that the product is a different product. The proposed model showed an accuracy of about 71.8% for a query to a product (positive: positive) with the same drawing as the real product, and an accuracy of about 83.1% for a query to a different product (positive: negative). In the future, we plan to conduct a study to improve the matching accuracy between the real product image and the drawing image by combining the parameter optimization study with the proposed model and adding processes such as data purification.

Study on Radionuclide Migration Modelling for a Single Fracture in Geologic Medium : Characteristics of Hydrodynamic Dispersion Diffusion Model and Channeling Dispersion Diffusion Model (단일균열 핵종이동모델에 관한 연구 -수리분산확산모델과 국부통로확산모델의 특성-)

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.401-410
    • /
    • 1994
  • Validation study of two radionuclide migration models for single fracture developed in geologic medium the hydrodynamic dispersion diffusion model(HDDM) and the channeling dispersion diffusion model(CDDM), was studied by migration experiment of tracers through an artificial granite fracture on the labolatory scale. The tracers used were Uranine and Sodium lignosulfonate know as nonsorbing material. The flow rate ranged 0.4 to 1.5 cc/min. Related parameters for the models were estimated by optimization technique. Theoretical breakthrough curves with experimental data were compared. In the experiment, it was deduced that the surface sorption for both tracers did not play an important role while the diffusion of Uranine into the rock matrix turned out to be an important mass transfer mechanism. The parameter characterizing the rock matrix diffusion of each model agreed well The simulated result showed that the amount of flow rate could not tell the CDDM from the HDDM quantitatively. On the other hand, the variation of fracture length gave influence on the two models in a different degree. The dispersivity of breakthrough curve of the CDDM was more amplified than that of the CDDM when the fracture length was increased. A good agreement between the models and experimental data gave a confirmation that both models were very useful in predicting the migration system through a single fracture.

  • PDF

Study on Power Distribution Algorithm in terms of Fuel Equivalent (등가 연료 관점에서의 동력 분배 알고리즘에 대한 연구)

  • Kim, Gyoungeun;Kim, Byeongwoo
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.6
    • /
    • pp.583-591
    • /
    • 2015
  • In order to evaluate the performance of TAS applied to the hybrid vehicle of the soft belt driven, acceleration performance and fuel consumption performance is to be superior to the existing vehicle. The key components of belt driven TAS(Torque Assist System), such as the engine, the motor and the battery, The key components of the driven belt TAS, such as the engine, the motor, and the battery, have a significant impact on fuel consumption performance of the vehicle. Therefore, in order to improve the efficiency at the point of view based on the overall system, the study of the power distribution algorithm for controlling the main source powers is necessary. In this paper, we propose the power distribution algorithm, applied the homogeneous analysis method in terms of fuel equivalent, for minimizing the fuel consumption. We have confirmed that the proposed algorithm is contribute to improving the fuel consumption performance satisfied the constraints considering the vehicle status information and the required power through the control parameters to minimize the fuel consumption of the engine. The optimization process of the proposed driving strategy can reduce the trial and error in the research and development process and monitor the characteristics of the control parameter quickly and accurately. Therefore, it can be utilized as a way to derive the operational strategy to minimize the fuel consumption.

Deep Neural Network Analysis System by Visualizing Accumulated Weight Changes (누적 가중치 변화의 시각화를 통한 심층 신경망 분석시스템)

  • Taelin Yang;Jinho Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.85-92
    • /
    • 2023
  • Recently, interest in artificial intelligence has increased due to the development of artificial intelligence fields such as ChatGPT and self-driving cars. However, there are still many unknown elements in training process of artificial intelligence, so that optimizing the model requires more time and effort than it needs. Therefore, there is a need for a tool or methodology that can analyze the weight changes during the training process of artificial intelligence and help out understatnding those changes. In this research, I propose a visualization system which helps people to understand the accumulated weight changes. The system calculates the weights for each training period to accumulates weight changes and stores accumulated weight changes to plot them in 3D space. This research will allow us to explore different aspect of artificial intelligence learning process, such as understanding how the model get trained and providing us an indicator on which hyperparameters should be changed for better performance. These attempts are expected to explore better in artificial intelligence learning process that is still considered as unknown and contribute to the development and application of artificial intelligence models.

Driving Behaivor Optimization Using Genetic Algorithm and Analysis of Traffic Safety for Non-Autonomous Vehicles by Autonomous Vehicle Penetration Rate (유전알고리즘을 이용한 주행행태 최적화 및 자율주행차 도입률별 일반자동차 교통류 안전성 분석)

  • Somyoung Shin;Shinhyoung Park;Jiho Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.30-42
    • /
    • 2023
  • Various studies have been conducted using microtraffic simulation (VISSIM) to analyze the safety of traffic flow when introducing autonomous vehicles. However, no studies have analyzed traffic safety in mixed traffic while considering the driving behavior of general vehicles as a parameter in VISSIM. Therefore, the aim of this study was to optimize the input variables of VISSIM for non-autonomous vehicles through genetic algorithms to obtain realistic behavior. A traffic safety analysis was then performed according to the penetration rate of autonomous vehicles. In a 640 meter section of US highway I-101, the number of conflicts was analyzed when the trailing vehicle was a non-autonomous vehicle. The total number of conflicts increased until the proportion of autonomous vehicles exceeded 20%, and the number of conflicts decreased continuously after exceeding 20%. The number of conflicts between non-autonomous vehicles and autonomous vehicles increased with proportions of autonomous vehicles of up to 60%. However, there was a limitation in that the driving behavior of autonomous vehicles was based on the results of the literature and did not represent actual driving behavior. Therefore, for a more accurate analysis, future studies should reflect the actual driving behavior of autonomous vehicles.