• Title/Summary/Keyword: Optimization of growth information

Search Result 63, Processing Time 0.029 seconds

A Case Study of Profit Optimization System Integration with Enhanced Security (관리보안이 강화된 수익성 최적화 시스템구축 사례연구)

  • Kim, Hyoung-Tae;Yoon, Ki-Chang;Yu, Seung-Hun
    • Journal of Distribution Science
    • /
    • v.13 no.11
    • /
    • pp.123-130
    • /
    • 2015
  • Purpose - Due to highly elevated levels of competition, many companies today have to face the problem of decreasing profits even when their actual sales volume is increasing. This is a common phenomenon that is seen occurring among companies that focus heavily on quantitative growth rather than qualitative growth. These two aspects of growth should be well balanced for a company to create a sustainable business model. For supply chain management (SCM) planners, the optimized, quantified flow of resources used to be of major interest for decades. However, this trend is rapidly changing so that managers can put the appropriate balance between sales volume and sales quality, which can be evaluated from the profit margin. Profit optimization is a methodology for companies to use to achieve solutions focused more on profitability than sales volume. In this study, we attempt to provide executional insight for companies considering implementation of the profit optimization system to enhance their business profitability. Research design, data, and methodology - In this study, we present a comprehensive explanation of the subject of profit optimization, including the fundamental concepts, the most common profit optimization logic algorithm -linear programming -the business functional scope of the profit optimization system, major key success factors for implementing the profit optimization system at a business organization, and weekly level detailed business processes to actively manage effective system performance in achieving the goals of the system. Additionally, for the purpose of providing more realistic and practical information, we carefully investigate a profit optimization system implementation case study project fulfilled for company S. The project duration was about eight months, with four full-time system development consultants deployed for the period. To guarantee the project's success, the organization adopted a proven system implementation methodology, supply chain management (SCM) six-sigma. SCM six-sigma was originally developed by a group of talented consultants within Samsung SDS through focused efforts and investment in synthesizing SCM and six-sigma to improve and innovate their SCM operations across the entire Samsung Organization. Results - Profit optimization can enable a company to create sales and production plans focused on more profitable products and customers, resulting in sustainable growth. In this study, we explain the concept of profit optimization and prerequisites for successful implementation of the system. Furthermore, the efficient way of system security administration, one of the hottest topics today, is also addressed. Conclusion - This case study can benefit numerous companies that are eagerly searching for ways to break-through current profitability levels. We cannot guarantee that the decision to deploy the profit optimization system will bring success, but we can guarantee that with the help of our study, companies trying to implement profit optimization systems can minimize various possible risks across various system implementation phases. The actual system implementation case of the profit optimization project at company S introduced here can provide valuable lessons for both business organizations and research communities.

Compression and Enhancement of Medical Images Using Opposition Based Harmony Search Algorithm

  • Haridoss, Rekha;Punniyakodi, Samundiswary
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.288-304
    • /
    • 2019
  • The growth of telemedicine-based wireless communication for images-magnetic resonance imaging (MRI) and computed tomography (CT)-leads to the necessity of learning the concept of image compression. Over the years, the transform based and spatial based compression techniques have attracted many types of researches and achieve better results at the cost of high computational complexity. In order to overcome this, the optimization techniques are considered with the existing image compression techniques. However, it fails to preserve the original content of the diagnostic information and cause artifacts at high compression ratio. In this paper, the concept of histogram based multilevel thresholding (HMT) using entropy is appended with the optimization algorithm to compress the medical images effectively. However, the method becomes time consuming during the measurement of the randomness from the image pixel group and not suitable for medical applications. Hence, an attempt has been made in this paper to develop an HMT based image compression by utilizing the opposition based improved harmony search algorithm (OIHSA) as an optimization technique along with the entropy. Further, the enhancement of the significant information present in the medical images are improved by the proper selection of entropy and the number of thresholds chosen to reconstruct the compressed image.

Invariant-Feature Based Object Tracking Using Discrete Dynamic Swarm Optimization

  • Kang, Kyuchang;Bae, Changseok;Moon, Jinyoung;Park, Jongyoul;Chung, Yuk Ying;Sha, Feng;Zhao, Ximeng
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • With the remarkable growth in rich media in recent years, people are increasingly exposed to visual information from the environment. Visual information continues to play a vital role in rich media because people's real interests lie in dynamic information. This paper proposes a novel discrete dynamic swarm optimization (DDSO) algorithm for video object tracking using invariant features. The proposed approach is designed to track objects more robustly than other traditional algorithms in terms of illumination changes, background noise, and occlusions. DDSO is integrated with a matching procedure to eliminate inappropriate feature points geographically. The proposed novel fitness function can aid in excluding the influence of some noisy mismatched feature points. The test results showed that our approach can overcome changes in illumination, background noise, and occlusions more effectively than other traditional methods, including color-tracking and invariant feature-tracking methods.

Design of Smart Farm Growth Information Management Model Based on Autonomous Sensors

  • Yoon-Su Jeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.113-120
    • /
    • 2023
  • Smart farms are steadily increasing in research to minimize labor, energy, and quantity put into crops as IoT technology and artificial intelligence technology are combined. However, research on efficiently managing crop growth information in smart farms has been insufficient to date. In this paper, we propose a management technique that can efficiently monitor crop growth information by applying autonomous sensors to smart farms. The proposed technique focuses on collecting crop growth information through autonomous sensors and then recycling the growth information to crop cultivation. In particular, the proposed technique allocates crop growth information to one slot and then weights each crop to perform load balancing, minimizing interference between crop growth information. In addition, when processing crop growth information in four stages (sensing detection stage, sensing transmission stage, application processing stage, data management stage, etc.), the proposed technique computerizes important crop management points in real time, so an immediate warning system works outside of the management criteria. As a result of the performance evaluation, the accuracy of the autonomous sensor was improved by 22.9% on average compared to the existing technique, and the efficiency was improved by 16.4% on average compared to the existing technique.

Implementation of A Thin Film Hydroponic Cultivation System Using HMI

  • Gyu-Seok Lee;Tae-Sung Kim;Myeong-Chul Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.55-62
    • /
    • 2024
  • In this paper, we propose a thin-film hydroponic plant cultivator using HMI display and IoT technology. Existing plant cultivators were difficult to manage due to soil-based cultivation, and it was difficult to optimize environmental conditions due to the open cultivation environment. In addition, there are problems with plant cultivation as immediate control is difficult and growth of plants is delayed. To solve this problem, a cultivation environment was established by connecting the MCU and sensors, and the environment information could be checked and quickly controlled by linking with the HMI display. Additionally, a case was applied to minimize changes in environmental information. Implementation of a thin-film hydroponic cultivation system made soil management easier, improved functionality through operation and control, and made it easy to understand environmental information through the display. The effectiveness of rapid growth was confirmed through crop cultivation experiments in existing growers and hydroponic growers. Future research directions will include optimizing growth information by transmitting and storing cultivation environment information and linking and comparing growth information using vision cameras. It is expected that this will enable efficient and stable plant cultivation.

Feature Selection to Mine Joint Features from High-dimension Space for Android Malware Detection

  • Xu, Yanping;Wu, Chunhua;Zheng, Kangfeng;Niu, Xinxin;Lu, Tianling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4658-4679
    • /
    • 2017
  • Android is now the most popular smartphone platform and remains rapid growth. There are huge number of sensitive privacy information stored in Android devices. Kinds of methods have been proposed to detect Android malicious applications and protect the privacy information. In this work, we focus on extracting the fine-grained features to maximize the information of Android malware detection, and selecting the least joint features to minimize the number of features. Firstly, permissions and APIs, not only from Android permissions and SDK APIs but also from the developer-defined permissions and third-party library APIs, are extracted as features from the decompiled source codes. Secondly, feature selection methods, including information gain (IG), regularization and particle swarm optimization (PSO) algorithms, are used to analyze and utilize the correlation between the features to eliminate the redundant data, reduce the feature dimension and mine the useful joint features. Furthermore, regularization and PSO are integrated to create a new joint feature mining method. Experiment results show that the joint feature mining method can utilize the advantages of regularization and PSO, and ensure good performance and efficiency for Android malware detection.

Optimization and Performance Analysis of Cloud Computing Platform for Distributed Processing of Big Data (대용량 데이터의 분산 처리를 위한 클라우드 컴퓨팅 환경 최적화 및 성능평가)

  • Hong, Seung-Tae;Shin, Young-Sung;Chang, Jae-Woo
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.55-71
    • /
    • 2011
  • Recently, interest in cloud computing which provides IT resources as service form in IT field is increasing. As a result, much research has been done on the distributed data processing that store and manage a large amount of data in many servers. Meanwhile, in order to effectively utilize the spatial data which is rapidly increasing day by day with the growth of GIS technology, distributed processing of spatial data using cloud computing is essential. Therefore, in this paper, we review the representative distributed data processing techniques and we analyze the optimization requirements for performance improvement of the distributed processing techniques for a large amount of data. In addition, we uses the Hadoop and we evaluate the performance of the distributed data processing techniques for their optimization requirements.

An Improved Coyote Optimization Algorithm-Based Clustering for Extending Network Lifetime in Wireless Sensor Networks

  • Venkatesh Sivaprakasam;Vartika Kulshrestha;Godlin Atlas Lawrence Livingston;Senthilnathan Arumugam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1873-1893
    • /
    • 2023
  • The development of lightweight, low energy and small-sized sensors incorporated with the wireless networks has brought about a phenomenal growth of Wireless Sensor Networks (WSNs) in its different fields of applications. Moreover, the routing of data is crucial in a wide number of critical applications that includes ecosystem monitoring, military and disaster management. However, the time-delay, energy imbalance and minimized network lifetime are considered as the key problems faced during the process of data transmission. Furthermore, only when the functionality of cluster head selection is available in WSNs, it is possible to improve energy and network lifetime. Besides that, the task of cluster head selection is regarded as an NP-hard optimization problem that can be effectively modelled using hybrid metaheuristic approaches. Due to this reason, an Improved Coyote Optimization Algorithm-based Clustering Technique (ICOACT) is proposed for extending the lifetime for making efficient choices for cluster heads while maintaining a consistent balance between exploitation and exploration. The issue of premature convergence and its tendency of being trapped into the local optima in the Improved Coyote Optimization Algorithm (ICOA) through the selection of center solution is used for replacing the best solution in the search space during the clustering functionality. The simulation results of the proposed ICOACT confirmed its efficiency by increasing the number of alive nodes, the total number of clusters formed with the least amount of end-to-end delay and mean packet loss rate.

Optimization of Finite Element Retina by GA for Plant Growth Neuro Modeling

  • Murase, H.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-29
    • /
    • 2000
  • The development of bio-response feedback control system known as the speaking plant approach has been a challenging task for plant production engineers and scientists. In order to achieve the aim of developing such a bio-response feedback control system, the primary concern should be to develop a practical non-invasive technique for monitoring plant growth. Those who are skilled in raising plants can sense whether their plants are under adequate water conditions or not, for example, by merely observing minor color and tone changes before the plants wilt. Consequently, using machine vision, it may be possible to recognize changes in indices that describe plant conditions based on the appearance of growing plants. The interpretation of image information of plants may be based on image features extracted from the original pictorial image. In this study, the performance of a finite element retina was optimized by a genetic algorithm. The optimized finite element retina was evaluated based on the performance of neural plant growth monitor that requires input data given by the finite element retina.

  • PDF

Optimization of Cultural Conditions for Mycelial Growth and Exo-Polysaccharide Production in Jar Fermentation by Fomitopsis pinicola

  • Cha, Wol-Suk;Jilu, Ding;Lee, Choon-Beom;Nam, Hyung-Geun;Lee, Jun-Han;Maeng, Jeung-Moo;Lim, Hwan-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.187-191
    • /
    • 2005
  • The Study was carried out to investigate in the optimal mycelial growth and Exo-Polysaccharides of Fomitopsis pinicola. Jar fermentations were carried out to optimize the culture conditions for mycelial growth and exo- polysaccharide production. The optimal agitation speed and aeration rate were 200 rpm and 1.5 v.v.m., respectively. Under optimal culture conditions, the maximum mycelial growth and exo-polysaccharide production after 11 days with a 5 L jar fermenter containing the optimized medium were 10.21 g/L and 3.56 g/L, respectively. However, the fundamental information obtained this study is insufficient in the development of a efficient process for mycelial growth and exe-polysaccharide production from Fomitopsis pinicola.

  • PDF