• Title/Summary/Keyword: Optimization of Investment

Search Result 142, Processing Time 0.033 seconds

Optimal Transmission Expansion Planning Considering the Uncertainties of Power Market (전력시장 불확실성을 고려한 최적 송전시스템 확장계획)

  • Son, Min-Kyun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.560-566
    • /
    • 2008
  • Today, as the power trades between generation companies and power customer are liberalized, the uncertainty level of operated power system is rapidly increased. Therefore, transmission operators as decision makers for transmission expansion are required to establish a deliberate investment plan for effective operations of transmission facilities considering forecasted conditions of power system. This paper proposes the methodology for the optimal solution of transmission expansion in deregulated power system. The paper obtains the expected value of transmission congestion cost for various scenarios by using occurrence probability. In addition, the paper assumes that increasing rates of loads are the probability distribution and indicates the location of expanded transmission line, the time for transmission expansion with the minimum cost for the future by performing the Montecarlo simulation. To minimize the investment risk as the variance of the congestion cost, Mean-Variance Markowitz portfolio theory is applied to the optimization model by the penalty factor of the variance. By the case study, the optimal solution for transmission expansion plan considering the feature of market participants is obtained.

Risk-based Optimal Transmission Expansion Planning (위험도기반 최적송전확장계획)

  • Son, Min-Kyun;Kim, Dong-Min;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.393-395
    • /
    • 2006
  • In competitive market, it is important to establish a plan of transmission expansion considering uncertainty of future generation and load behavior. For this reason, revised transmission expansion model is proposed in this paper. In the proposed model, information of predictable future condition are included in a cost function of transmission expansion investment. Also, to reduce risk of the investment, mean-variance Markowitz approach is added to the objective function of cost. By optimization programming, the most robust and the minimum cost plan can be obtained.

  • PDF

A Study on the Optimal Planning Model of Building Integrated Energy System's Components (건물용 종합에너지시스템 구성요소의 최적 투자모형에 관한 연구)

  • Suh, S.O.;Park, J.S.;Chang, S.C.;Kim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.797-799
    • /
    • 1997
  • This paper presents an operation and planning model of integrated energy systems which consist of small scale cogeneration systems, thermal accumulator, ice storage and electrical energy storage systems. In the proposed planning model, an optimization of total cost which contains investment, operation, thermal shortage and salvage costs has carried out with the maximum principle based on the lifetime of each system component and unit price per capacity. From this model, optimal investment capacity per annum can be determined during the studied periods using the marginal costs according to the operation characteristics of each system component.

  • PDF

Estimation of Optimal Target Amount for Efficiency Improvement Program of DSM (효율향상 프로그램의 최적 수요관리목표량 산정)

  • So, Chol-Ho;Park, Jong-Jin;Kim, Jin-O;Cho, Joong-Sam
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.842-843
    • /
    • 2007
  • In this paper, the proper rebate level can be decided in programs of energy savings by solving an optimization problem with an objective function, which satisfies a maximum value of total energy savings. And then, each prevalence amount is estimated by using virtual Bass model which is a function of rebate level, instead of the conventional Bass model. Finally, by cost/benefit analysis of the estimated prevalence amounts, the priority order is obtained for the investment of each program. The priority order obtained in this way may result the improvement of investment efficiency for DSM(Demand-Side Management) programs and the reasonable plan decision for supply and demand in power system.

  • PDF

Simultaneous Planning of Renewable/ Non-Renewable Distributed Generation Units and Energy Storage Systems in Distribution Networks

  • Jannati, Jamil;Yazdaninejadi, Amin;Talavat, Vahid
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.111-118
    • /
    • 2017
  • The increased diversity of different types of energy sources requires moving towards smart distribution networks. This paper proposes a probabilistic DG (distributed generation) units planning model to determine technology type, capacity and location of DG units while simultaneously allocating ESS (energy storage systems) based on pre-determined capacities. This problem is studied in a wind integrated power system considering loads, prices and wind power generation uncertainties. A suitable method for DG unit planning will reduce costs and improve reliability concerns. Objective function is a cost function that minimizes DG investment and operational cost, purchased energy costs from upstream networks, the defined cost to reliability index, energy losses and the investment and degradation costs of ESS. Electrical load is a time variable and the model simulates a typical radial network successfully. The proposed model was solved using the DICOPT solver under GAMS optimization software.

The Optimal Mean-Variance Portfolio Formulation by Mathematical Planning (Mean-Variance 수리 계획을 이용한 최적 포트폴리오 투자안 도출)

  • Kim, Tai-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.63-71
    • /
    • 2009
  • The traditional portfolio optimization problem is to find an investment plan for securities with reasonable trade-off between the rate of return and the risk. The seminal work in this field is the mean-variance model by Markowitz, which is a quadratic programming problem. Since it is now computationally practical to solve the model, a number of alternative models to overcome this complexity have been proposed. In this paper, among the alternatives, we focus on the Mean Absolute Deviation (MAD) model. More specifically, we developed an algorithm to obtain an optimal portfolio from the MAD model. We showed mathematically that the algorithm can solve the problem to optimality. We tested it using the real data from the Korean Stock Market. The results coincide with our expectation that the method can solve a variety of problems in a reasonable computational time.

ON STOCHASTIC OPTIMAL REINSURANCE AND INVESTMENT STRATEGIES FOR THE SURPLUS UNDER THE CEV MODEL

  • Jung, Eun-Ju;Kim, Jai-Heui
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.91-100
    • /
    • 2011
  • It is important to find an optimal strategy which maximize the surplus of the insurance company at the maturity time T. The purpose of this paper is to give an explicit expression for the optimal reinsurance and investment strategy, under the CEV model, which maximizes the expected exponential utility of the final value of the surplus at T. To do this optimization problem, the corresponding Hamilton-Jacobi-Bellman equation will be transformed a linear partial differential equation by applying a Legendre transform.

A DEEP LEARNING ALGORITHM FOR OPTIMAL INVESTMENT STRATEGIES UNDER MERTON'S FRAMEWORK

  • Gim, Daeyung;Park, Hyungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.311-335
    • /
    • 2022
  • This paper treats Merton's classical portfolio optimization problem for a market participant who invests in safe assets and risky assets to maximize the expected utility. When the state process is a d-dimensional Markov diffusion, this problem is transformed into a problem of solving a Hamilton-Jacobi-Bellman (HJB) equation. The main purpose of this paper is to solve this HJB equation by a deep learning algorithm: the deep Galerkin method, first suggested by J. Sirignano and K. Spiliopoulos. We then apply the algorithm to get the solution to the HJB equation and compare with the result from the finite difference method.

A Study on the Multi-level Optimization Method for Heat Source System Design (다단계 최적화 수법을 이용한 열원 설비 설계법에 관한 연구)

  • Yu, Min-Gyung;Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.299-304
    • /
    • 2016
  • In recent years, heat source systems which have a principal effect on the performance of buildings are difficult to design optimally as a great number of design factors and constraints in large and complicated buildings need to be considered. On the other hand, it is necessary to design an optimum system combination and operation planning for energy efficiency considering Life Cycle Cost (LCC). This study suggests a multi-level and multi-objective optimization method to minimize both LCC and investment cost using a genetic algorithm targeting an office building which requires a large cooling load. The optimum method uses a two stage process to derive the system combination and the operation schedule by utilizing the input data of cooling and heating load profile and system performance characteristics calculated by dynamic energy simulation. The results were assessed by Pareto analysis and a number of Pareto optimal solutions were determined. Moreover, it was confirmed that the derived operation schedule was useful for operating the heat source systems efficiently against the building energy requirements. Consequently, the proposed optimization method is determined by a valid way if the design process is difficult to optimize.

Game Theoretic Optimization of Investment Portfolio Considering the Performance of Information Security Countermeasure (정보보호 대책의 성능을 고려한 투자 포트폴리오의 게임 이론적 최적화)

  • Lee, Sang-Hoon;Kim, Tae-Sung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.37-50
    • /
    • 2020
  • Information security has become an important issue in the world. Various information and communication technologies, such as the Internet of Things, big data, cloud, and artificial intelligence, are developing, and the need for information security is increasing. Although the necessity of information security is expanding according to the development of information and communication technology, interest in information security investment is insufficient. In general, measuring the effect of information security investment is difficult, so appropriate investment is not being practice, and organizations are decreasing their information security investment. In addition, since the types and specification of information security measures are diverse, it is difficult to compare and evaluate the information security countermeasures objectively, and there is a lack of decision-making methods about information security investment. To develop the organization, policies and decisions related to information security are essential, and measuring the effect of information security investment is necessary. Therefore, this study proposes a method of constructing an investment portfolio for information security measures using game theory and derives an optimal defence probability. Using the two-person game model, the information security manager and the attacker are assumed to be the game players, and the information security countermeasures and information security threats are assumed as the strategy of the players, respectively. A zero-sum game that the sum of the players' payoffs is zero is assumed, and we derive a solution of a mixed strategy game in which a strategy is selected according to probability distribution among strategies. In the real world, there are various types of information security threats exist, so multiple information security measures should be considered to maintain the appropriate information security level of information systems. We assume that the defence ratio of the information security countermeasures is known, and we derive the optimal solution of the mixed strategy game using linear programming. The contributions of this study are as follows. First, we conduct analysis using real performance data of information security measures. Information security managers of organizations can use the methodology suggested in this study to make practical decisions when establishing investment portfolio for information security countermeasures. Second, the investment weight of information security countermeasures is derived. Since we derive the weight of each information security measure, not just whether or not information security measures have been invested, it is easy to construct an information security investment portfolio in a situation where investment decisions need to be made in consideration of a number of information security countermeasures. Finally, it is possible to find the optimal defence probability after constructing an investment portfolio of information security countermeasures. The information security managers of organizations can measure the specific investment effect by drawing out information security countermeasures that fit the organization's information security investment budget. Also, numerical examples are presented and computational results are analyzed. Based on the performance of various information security countermeasures: Firewall, IPS, and Antivirus, data related to information security measures are collected to construct a portfolio of information security countermeasures. The defence ratio of the information security countermeasures is created using a uniform distribution, and a coverage of performance is derived based on the report of each information security countermeasure. According to numerical examples that considered Firewall, IPS, and Antivirus as information security countermeasures, the investment weights of Firewall, IPS, and Antivirus are optimized to 60.74%, 39.26%, and 0%, respectively. The result shows that the defence probability of the organization is maximized to 83.87%. When the methodology and examples of this study are used in practice, information security managers can consider various types of information security measures, and the appropriate investment level of each measure can be reflected in the organization's budget.