• 제목/요약/키워드: Optimization calculation

검색결과 631건 처리시간 0.028초

구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화 (Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control using Gradient Method)

  • 강영규;박현철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.684-688
    • /
    • 1998
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping. It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing tie SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm

  • LIN , JIAN-QIANG;LEE, SANG-MOK;KOO, YOON-MO
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1163-1169
    • /
    • 2004
  • An unstructured mathematical model is presented for lactic acid fermentation based on the energy balance. The proposed model reflects the energy metabolic state and then predicts the cell growth, lactic acid production, and glucose consumption rates by relating the above rates with the energy metabolic rate. Fermentation experiments were conducted under various initial lactic acid concentrations of 0, 30, 50, 70, and 90 g/l. Also, a genetic algorithm was used for further optimization of the model parameters and included the operations of coding, initialization, hybridization, mutation, decoding, fitness calculation, selection, and reproduction exerted on individuals (or chromosomes) in a population. The simulation results showed a good fit between the model prediction and the experimental data. The genetic algorithm proved to be useful for model parameter optimization, suggesting wider applications in the field of biological engineering.

IEEE 802.11 DCF에서의 게임 이론적 접근방법 소개 (Survey on IEEE 802.11 DCF Game Theoretic Approaches)

  • 최병철;김정녀;류재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.240-242
    • /
    • 2007
  • The game theoretic analysis in wireless networks can be classified into the jamming game of the physical layer, the multiple access game of the medium access layer, the forwarder's dilemma and joint packet forwarding game of the network layer, and etc. In this paper, the game theoretic analysis about the multiple access game that selfish nodes exist in the IEEE 802.11 DCF(Distributed Coordination Function) wireless networks is addressed. In this' wireless networks, the modeling of the CSMA/CA protocol based DCF, the utility or payoff function calculation of the game, the system optimization (using optimization theory or convex optimization), and selection of Pareto-optimality and Nash Equilibrium in game strategies are the important elements for analyzing how nodes are operated in the steady state of system. Finally, the main issues about the game theory in the wireless network are introduced.

  • PDF

CFD 기법을 이용한 실린더헤드 가스켓홀 통과 유량의 최적화 (Numerical Optimization of the Coolant Flow Rates through Cylinder Head Gasket Holes by applying CFD Techniques)

  • 백경욱;이상호;조남효
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.121-128
    • /
    • 2000
  • Simple design methods were developed to control the coolant flow rates through cylinder head gasket holes. Applying the concept of flow through an obstruction the ratio of intake to exhaust side flow rates could be easily controlled while maintaining the flow rates per cylinder of the original model. Flow distribution in the coolant passage of the original model was calculated by CFD and the flow rates at the gasket holes were modified based on the calculation results. The calculated flow rated of the modified gasket holes were reasonably close to target values. For more accurate control of the flow rate distribution, a design method with iterative CFD calculations was also suggested. The final size of gasket holes for the target flow rates were obtained just after a few optimization iterations. These methods can be very useful for the optimization of heat transfer characteristics in engine cylinder head and block.

  • PDF

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • 제5권2호
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

Parameter Optimal Choice of Claw Pole Alternator based on Iron Loss Model

  • Bao, Xiaohua;Wei, Qiong;Wu, Feng;Li, Jiaqing
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권3호
    • /
    • pp.260-268
    • /
    • 2013
  • Based on classical Berotti discrete iron loss calculation model, the iron loss analysis mathematical model of alternator was proposed in this paper. Considering characteristics of high speed and changing frequency of the alternator, Maxwell 3-D model was built to analyze iron loss corresponding to each running speed in alternator. Based on iron loss model of alternator at rated speed, the rotor claw pole size was made an optimization design. The optimization results showed that alternator's output performance had been improved. A new idea was explored in size optimization design of claw pole alternator.

다단계 최적변경법에 관한 연구 (A study on the Optimum Modification Method by Multi-level Opimization)

  • 박성현;박선주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1266-1272
    • /
    • 2001
  • This paper discusses the multi-level optimization method in dynamic optimization problems, through stiffened plate of ship structures. In structural optimization, the computational cost increases rapidly as the number of design variables increases. And we need a great amount of calculation and time on problems of modified dynamic characteristics of large and complicated structures. In this paper, the multi-level optimization is proposed, which decreases computational time and cost. The dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

Numerical Optimization of the Turbine Blade Leaning Angle Using the Parallel Genetic Algorithm

  • Lee, Eun-Seok;Jeong, Yong-Hyun;Park, Soon-Young
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.686-689
    • /
    • 2008
  • The leaning angle optimization of turbine blade using the genetic algorithm was conducted in this paper. The calculation CFD technique was based upon the Diagonalized Alternating Directional Implicit scheme(DADI) with algebraic turbulence modeling. The leaning angle of VKI turbine blade was represented using B-spline curve. The control points are the design variable. Genetic algorithm was taken into account as an optimization tool. The objective was to minimize the total pressure loss. The optimized final geometry shows the better aerodynamic performance compared with the initial turbine blade.

  • PDF

PSO법을 응용한 확률적 시뮬레이션의 최적화 기법 연구 (A Study on Modified PSO for the Optimization of Stochastic Simulations)

  • 김선범;김정훈;이동훈
    • 한국시뮬레이션학회논문지
    • /
    • 제22권4호
    • /
    • pp.21-28
    • /
    • 2013
  • 일반적으로 최적화 문제에서 군사 시뮬레이션과 같이 결과가 확률적으로 나타나는 경우를 계산할 때에는 문제를 모델링 하여 일반적인 최적화 기법을 적용하는 것에 어려움이 있다. 본 논문에서는 이러한 군사 시뮬레이션의 특징을 반영하는 복잡한 반응표면을 가진 확률적 평가 함수를 정의하였다. 그리고 이러한 확률적 시뮬레이션에 대해 기존의 PSO법이 가진 약점을 보완하는 기법을 제안하였다. 제안한 기법을 이용해 평가 함수에 대한 최적화를 시행하였으며 최적화의 속도와 정확도에 영향을 미치는 계산 조건들의 상호작용을 분석하였다. 이를 통해 본 논문에서 제안한 확률적 시뮬레이션의 최적화 전략을 제시하였다.

해안지하수개발 최적화수치모델과 해석해의 비교연구 (Comparison of a Groundwater Simulation-Optimization Numerical Model with the Analytical Solutions)

  • 시뢰;최뢰;이찬종;박남식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.905-908
    • /
    • 2009
  • In the management of groundwater in coastal areas, saltwater intrusion associated with extensive groundwater pumping, is an important problem. The groundwater optimization model is an advanced method to study the aquifer and decide the optimal pumping rates or optimal well locations. Cheng and Park gave the analytical solutions to the optimization problems basing on Strack's analytical solution. However, the analytical solutions have some limitations of the property of aquifer, boundary conditions, and so on. A simulation-optimization numerical method presented in this study can deal with non-homogenous aquifers and various complex boundary conditions. This simulation-optimization model includes the sharp interface solution which solves the same governing equation with Strack's analytical solution, therefore, the freshwater head and saltwater thickness should be in the same conditions, that can lead to the comparable results in optimal pumping rates and optimal well locations for both of the solutions. It is noticed that the analytical solutions can only be applied on the infinite domain aquifer, while it is impossible to get a numerical model with infinite domain. To compare the numerical model with the analytical solutions, calculation of the equivalent boundary flux was planted into the numerical model so that the numerical model can have the same conditions in steady state with analytical solutions.

  • PDF