• Title/Summary/Keyword: Optimization calculation

Search Result 632, Processing Time 0.028 seconds

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

Shape Optimization of A Micromixer with Herringbone Grooves Using Kriging Model (헤링본 미세혼합기의 크리깅 모델을 사용한 최적형상설계)

  • Ansari, Mubashshir Ahmad;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.711-717
    • /
    • 2007
  • Shape optimization of a staggered herringbone groove micromixer using three-dimensional Navier-Stokes analysis has been carried using Kriging model. The analysis of the degree of mixing is performed by the calculation of spatial data statistics. The calculation of the variance of the mass fraction at various nodes on a plane in the channel is used to quantify mixing. A numerical optimization technique with Kriging model is applied to optimize the shape of the grooves on a single wall of the channel. Three design variables, namely, the ratio of groove width to groove pitch, the ratio of the groove depth to channel height ratio and the angle of the groove, are selected for optimization. A mixing index is used as the objective function. The results of the optimization show that the mixing is very sensitive to the shape of the groove which can be used in controlling mixing in microdevices.

A Study on Centrifugal Compressor Design Optimization for Increasing Surge Margin (서지 마진 증가를 고려한 원심 압축기 설계 최적화)

  • Chai, Jae-Ha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.38-45
    • /
    • 2008
  • This study presents a numerical procedure to optimize the compressor design to increase the surge margin of compressor with response surface method (RSM). The Box-Behnken design method is used to reduce the number of calculation for fitting the second-order response surface. In order to consider the increase of surge margin during numerical optimization without any calculation at the surge point, the slope of compressor characteristic curve at the design point is suggested as an objective function in the present optimization problem. Mean line performance analysis method is used to get the design and off-design characteristic curves of centrifugal compressor. The impeller exit angle, impeller exit height and impeller radius are chosen as design variables. The optimum shapes show the increase of surge margin for the surge margin optimization and increase of efficiency for the efficiency optimization in comparison with an initial shape.

Reduction of Design Variables for Automated Optimization of Injection Mold Cooling Circuit (사출금형 냉각회로 자동최적화를 위한 설계변수 감소 방안)

  • Rhee, B.O.;Choi, J.H.;Tae, J.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.417-422
    • /
    • 2009
  • The injection mold cooling circuit optimization was studied with a response surface method in the previous research. It took so much time to find an optimum solution for a large product due to an extensive amount of calculation time for the CAE analysis. In order to use the optimization technique in the actual design process, the calculation time should be much reduced. In this study, we tried to reduce the number of design variables with the concept of the close relationship between the depth and the distance of cooling channel. The optimum ratio of the distance to the depth of cooling channels for a 2-dimensional problem was 2.0 so that the optimum ratio was again sought out for 4 large automotive parts. Therefore, the number of design variables for the cooling circuit optimization can be reduced in half, resulting in much faster running time for the optimization as a design tool.

  • PDF

A B-spline based Branch & Bound Algorithm for Global Optimization (전역 최적화를 위한 B-스플라인 기반의 Branch & Bound알고리즘)

  • Park, Sang-Kun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2010
  • This paper introduces a B-spline based branch & bound algorithm for global optimization. The branch & bound is a well-known algorithm paradigm for global optimization, of which key components are the subdivision scheme and the bound calculation scheme. For this, we consider the B-spline hypervolume to approximate an objective function defined in a design space. This model enables us to subdivide the design space, and to compute the upper & lower bound of each subspace where the bound calculation is based on the LHS sampling points. We also describe a search tree to represent the searching process for optimal solution, and explain iteration steps and some conditions necessary to carry out the algorithm. Finally, the performance of the proposed algorithm is examined on some test problems which would cover most difficulties faced in global optimization area. It shows that the proposed algorithm is complete algorithm not using heuristics, provides an approximate global solution within prescribed tolerances, and has the good possibility for large scale NP-hard optimization.

Computation of Zwicker's loudness and design optimization with Pad$\acute{e}$ approximation (Pad$\acute{e}$ 근사법을 이용한 Zwicker 라우드니스의 계산과 최적화)

  • Kook, Jung-Hwan;Jensen, Jakob S.;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.279-284
    • /
    • 2011
  • The calculation of Zwicker's loudness which is needed for multiple frequency response with a fine frequency resolution using the finite element (FE) procedure usually requires significant computation time since a numerical solution must be obtained for each considered frequency. Furthermore, if the analysis is the basis for an iterative optimization procedure this approach imposes high computational cost. In this work, we present an efficient approach for obtaining Zwicker's loudness via the Pad$\acute{e}$ approximants and applying in an acoustical topology optimization procedure. The paper is focused on an efficient and accurate calculation of Zwicker's loudness, design sensitivity analysis, and the acoustical topology optimization method by using Pad$\acute{e}$ approximants. The paper compares the efficient algorithm to results obtained by a standard FEM. Comparison are made both in terms of accuracy and in terms of CPU-times needed for the calculation.

  • PDF

A Study on the Method of Non-Standard Cargo Volume Calculation Based on LiDar Sensor for Cargo Loading Optimization (화물 선적 최적화를 위한 LiDar 센서 기반 비규격 화물 체적산출 방법 연구)

  • Jeon, Young Joon;Kim, Ye Seul;Ahn, Sun Kyu;Jeong, Seok Chan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.4
    • /
    • pp.559-567
    • /
    • 2022
  • The optimal shipping location is determined by measuring the volume and weights of cargo shipped to non-standard cargo carriers. Currently, workers manually measure cargo volume, but automate it to improve work inefficiency. In this paper, we proposed the method of a real-time volume calculation using LiDar sensor for automating cargo measurement of non-standard cargo. For this purpose, we utilized the statistical techniques for data preprocessing and volume calculation, also used Voxel Grid filter to light weighted of data which are appropriate in real-time calculation. We implemented the function of Normal vectors and Triangle Mesh to generate surfaces and Alpha Shapes algorithms to process 3D modeling.

Bubble Point Calculation using Experimental Flash Points of Binary Solutions (이성분계 용액의 인화점 실험값을 이용한 기포점 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.39-44
    • /
    • 2016
  • Suitable design and operation of distillation process is very dependent on vapor-liquid equilibrium calculation. The usual calculation method is use binary interaction parameter. Flash points of n-propanol+n-butanol and 2-butanol+n-butanol were measured by Seta-flash closed cup tester. Experimental Flash points were compared with those calculated by the method based on Raoult's law and the optimization method using Wilson equation. The binary interaction parameters obtained by the optimization method are then used to calculate the bubble points of n-propanol+n-butanol and 2-butanol+n-butanol.

Analysis on a Power Transaction with Fuel-Constrained Generations in an Electricity Market (연료제약 발전기를 고려한 전력거래 해석기법 연구)

  • 이광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.484-489
    • /
    • 2004
  • When the energy resource available to a particular plant (be it coal, oil, gas, water, or nuclear fuel) is a limiting factor in the operation of the plant, the entire economic dispatch calculation must be done differently. Each economic dispatch calculation must account for what happened before and what will happen in the future. This paper presents a formulation and a solution method for the optimization problem with a fuel constraint in a competitive electricity market. Take-or- Pay (TOP) contract for an energy resource is the typical constraint as a limiting factor. Two approaches are proposed in this paper for modeling the dispatch calculation in a market mechanism. The approaches differ in the subject who considers and inserts the fuel-constraint into its optimization problem. Market operator and each power producer having a TOP contract are assumed as such subjects. The two approaches are compared from the viewpoint of profits. surplus. and social welfare on the basis of Nash Equilibrium.

Multicriteria shape design of an aerosol can

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis;Olivier, Beigneux
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.165-175
    • /
    • 2015
  • One of the current challenges in the domain of the multicriteria shape optimization is to reduce the calculation time required by conventional methods. The high computational cost is due to the high number of simulation or function calls required by these methods. Recently, several studies have been led to overcome this problem by integrating a metamodel in the overall optimization loop. In this paper, we perform a coupling between the Normal Boundary Intersection - NBI - algorithm with Radial Basis Function - RBF - metamodel in order to have a simple tool with a reasonable calculation time to solve multicriteria optimization problems. First, we apply our approach to academic test cases. Then, we validate our method against an industrial case, namely, shape optimization of the bottom of an aerosol can undergoing nonlinear elasto-plastic deformation. Then, in order to select solutions among the Pareto efficient ones, we use the same surrogate approach to implement a method to compute Nash and Kalai-Smorodinsky equilibria.