Tamburini, Elena;Vaccari, Giuseppe;Tosi, Simona;Trilli, Antonio
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.3104-3104
/
2001
The research described here was undertaken with the aim of monitoring, optimizing and ultimately controlling the production of heterofermentative microbes used as starters in the salami industry. The use of starter cultures in the fermented meats industry is a well-established technique used to shorten and standardize the ripening process, and to improve and control the organoleptic quality of the final product. Starter cultures are obtained by the submerged cultivation of suitable microorganisms in stirred, and sometimes aerated, fermenters where monitoring of key physiological parameters such as the concentration of biomass, substrates and metabolites suffers from the general lack of real-time measurement techniques applicable to aseptic processes. In this respect, the results of the present work are relevant to all submerged fermentation processes. Previous work on the application of on-line NIR spectroscopy to the lactic acid fermentation (Dosi et al. - Monreal NIR1995) had successfully used a system based on a measuring cell included in a circulation loop external to the fermenter. The fluid handling and sterility problems inherent in an external circulation system prompted us to explore the use of an in-line system where the NIR probe is immersed in the culture and is thus exposed to the hydrodynamic conditions of the stirred and aerated fluid. Aeration was expected to be a potential source of problems in view of the possible interference of air bubbles with the measurement device. The experimental set-up was based on an in-situ sterilizable NIR probe connected to the instrument by means of an optical fiber bundle. Preliminary work was carried out to identify and control potential interferences with the measurement, in particular the varying hydrodynamic conditions prevailing at the probe tip. We were successful in defining the operating conditions of the fermenter and the geometrical parameters of the probe (flow path, positioning, etc.) were the NIR readings were reliable and reproducible. The system thus defined was then used to construct and validate calibration curves for tile concentration of biomass, carbon source and major metabolites of two different microorganisms used as salami starters. Real-time measurement of such parameters coupled with the direct interfacing of the NIR instrument with the PC-based measurement and control system of the fermenter enabled the development of automated strategies for the interactive optimization of the starter production process.
Journal of Korean Society of Environmental Engineers
/
v.22
no.3
/
pp.495-504
/
2000
This study discussed the optimal use of bentonite and cement for the compacted soil liner of landfill. Techniques employed in this optimization included permeability(by KSF 2322) and compressive strength(by KSF 2314). The optimal amount of these materials to the compacted soil liner was determined in accordance with a regulatory guideline of the government: that is, $k=1{\times}10^{-7}cm/sec$. The testing sods were CL(Clayey Soil) and SM(Sandy Soil), which were classified according to LSCS(Unifed Soil Classify System), The results showed that the optimal amounts of bentonite and cement to mix with the compacted CL soil liner were 5% of bentonite and 5% of cement : namely, $k=9.98{\times}10^{-8}cm/sec$ and ${\sigma}_{28}=1275kg/cm^2$. For the compacted SM soil liner. the optimal amount of bentonite was 15%, in conjunction with 5% of cement : namely, $k=9.86{\times}10^{-8}cm/sec$ and ${\sigma}_{28}=18.72kg/cm^2$. It was concluded that the compacted CL or SM soil liner, with containing the optimal amounts of bentonite and cement showed the acceptable permeability and the compressive strength, referring to a regulatory guideline of the government for construction of the landfill.
As the complexity of SoC (System-on-Chip) design increases dramatically. traditional system performance analysis and verification methods based on RTL (Register Transfer Level) are no more valid for increasing time-to-market pressure. Therefore a new design methodology is desperately required for system verification in early design stages. and hardware software (HW-SW) cosimulation at TLM (Transaction Level Modeling) level has been researched widely for solving this problem. However, most of HW-SW cosimulators support few restricted ion levels only, which makes it difficult to integrate HW-SW cosimulators with different ion levels. To overcome this difficulty, this paper proposes a multipurpose framework for HW SW cosimulation to provide systematic SoC design flow starting from software application design. It supports various design techniques flexibly for each design step, and various HW-SW cosimulators. Since a platform design is possible independently of ion levels and description languages, it allows us to generate simulation models with various ion levels. We verified the proposed framework to model a commercial SoC platform based on an ARM9 processor. It was also proved that this framework could be used for the performance optimization of an MJPEG example up to 44% successfully.
Histograms have been getting a lot of attention recently. Histograms are commonly utilized in commercial database systems to capture attribute value distributions for query optimization Recently, in the advent of researches on approximate query answering and stream data, the interests in histograms are widely being spread. The simplest approach assumes that the attributes in relational tables are independent by AVI(Attribute Value Independence) assumption. However, this assumption is not generally valid for real-life datasets. To alleviate the problem of approximation on multi-dimensional data with multiple one-dimensional histograms, several techniques such as wavelet, random sampling and multi-dimensional histograms are proposed. Among them, GENHIST is a multi-dimensional histogram that is designed to approximate the data distribution with real attributes. It uses overlapping buckets that allow more efficient approximation on the data distribution. In this paper, we propose a scheme, OPT that can determine the optimal frequencies of overlapped buckets that minimize the SSE(Sum Squared Error). A histogram with overlapping buckets is first generated by GENHIST and OPT can improve the histogram by calculating the optimal frequency for each bucket. Our experimental result confirms that our technique can improve the accuracy of histograms generated by GENHIST significantly.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.11
/
pp.483-490
/
2016
Automobile door latch is a fine design and assembly techniques are required in order to produce them in a small component assembly shape such as a spring, injection products, a small-sized motor. The door latch is fixed to not open the door of the car plays an important role it has a direct impact on the driver's safety. In this study, during trimming of the terminals of the connector main components of the car door latch, reduce rollover and conducted a research to find a suitable effective shear surface. Using the Taguchi method with orthogonal array of Finite Element Analysis and optimal Design of Experiments were set up parameters for the shear surface quality of the car door latch connector terminals. The design parameters used in the analysis is the clearance, the radius, and the blank holding force, the material of the connector terminal is a C2600. Trimming process optimum conditions suggested by the analysis has been verified by experiments, the shear surface shape and dimensions of a final product in good agreement with forming analysis results.Taguchi method from the above results in the optimization for the final rollover and effective shear surface improved for a vehicle door latch to the connector terminal can be seen that the applicable and useful for a variety of metal forming processes other than the trimming process is determined to be applicable.
It is increasing annually that the cost for bridge Maintenance Repair & Rehabilitation (MR&R) in developed countries. Based on Intelligent Technology, Bridge Management System (BMS) is developed for optimization of Life Cycle Cost (LCC) and reliability to predict long-term bridge deteriorations. However, such data are very limited amongst all the known bridge agencies, making it difficult to reliably predict future structural performances. To alleviate this problem, an Artificial Neural Network (ANN) based Backward Prediction Model (BPM) for generating missing historical condition ratings has been developed. Its reliability has been verified using existing condition ratings from the Maryland Department of Transportation, USA. The function of the BPM is to establish the correlations between the known condition ratings and such non-bridge factors as climate and traffic volumes, which can then be used to obtain the bridge condition ratings of the missing years. Since the non-bridge factors used in the BPM can influence the variation of the bridge condition ratings, well-selected non-bridge factors are critical for the BPM to function effectively based on the minimized discrepancy rate between the BPM prediction result and existing data (deck; 6.68%, superstructure; 6.61%, substructure; 7.52%). This research is on the generation of usable historical data using Artificial Intelligence techniques to reliably predict future bridge deterioration. The outcomes (Long-term Bridge deterioration Prediction) will help bridge authorities to effectively plan maintenance strategies for obtaining the maximum benefit with limited funds.
KSCE Journal of Civil and Environmental Engineering Research
/
v.34
no.4
/
pp.1105-1116
/
2014
A stochastic rainfall model, NSRPM (Neyman-Scott Rectangular Pulse Model), is able to reflect the cluster characteristics of rainfall events which is unable in the RPM (Rectangular Pulse Model). Therefore NSRPM has advantage in the hydrological applications. The NSRPM consists of five model parameters and the parameters are estimated using optimization techniques such as DFP (Davidon-Fletcher-Powell) method and genetic algorithm. However the DFP method is very sensitive in initial values and is easily converge to local minimum. Also genetic algorithm has disadvantage of long computation time. Nelder-Mead method has several advantages of short computation time and no need of a proper initial value. In this study, the applicability of parameter estimation methods was evaluated using rainfall data of 59 national rainfall networks from 1973-2011. Overall results demonstrated that accuracy in parameter estimation is in the order of Nelder-Mead method, genetic algorithm, and DFP method.
Park, Ji-Hoon;Won, Hyun-Kyu;Kim, Young-Hwan;Kim, Man-Pil
Journal of the Korea Society of Computer and Information
/
v.15
no.10
/
pp.229-237
/
2010
Recently, forest management objectives become more complex and complicated, and spatial constraints were necessarily considered for ecological stability. Now forest planning is required to provide an optimized solution that is able to achieve a number of management objectives and constraints. In this study, we developed a decision supporting system based on the one of dynamic planning techniques, Tabu Search (TS) heuristic algorithm, which enable one to generate an optimized solution for given objectives and constraints. For this purpose, we analyzed the logical flow of the algorithm and designed the subsequence of processes. To develop a high-performance computing system, we examined a number of strategy to minimize execution time and workloads in each process and to maximize efficiency of using system resources. We examined two model based on the original TS algorithm and revised version of TS algorithm and compared their performance in optimization process. The results showed high performance of the developed system in providing feasible solutions for several management objectives and constraints. Moreover, the revised version of TS algorithm was appeared to be more stable for providing results with minimum variation. The developed system is expected to use for developing forest management plans in Korea.
Currently, the prevalence of autism spectrum disorders in children is reported to be higher and shows various types of disorders. In particular, they are having difficulty in communication due to communication impairment in the area of social communication and need to be improved through training. Thus, this study proposes a method of acquiring voice information through a microphone mounted on a robot designed through preliminary research and using this information to make intelligent motions. An ANN(Artificial Neural Network) was used to classify the speech data into robot motions, and we tried to improve the accuracy by combining the Recurrent Neural Network based on Convolutional Neural Network. The preprocessing of input speech data was analyzed using MFCC(Mel-Frequency Cepstral Coefficient), and the motion of the robot was estimated using various data normalization and neural network optimization techniques. In addition, the designed ANN showed a high accuracy by conducting an experiment comparing the accuracy with the existing architecture and the method of human intervention. In order to design robot motions with higher accuracy in the future and to apply them in the treatment and education environment of children with autism.
Qazi, Sameer;Atif, Syed Muhammad;Kadri, Muhammad Bilal
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.10
/
pp.4678-4702
/
2018
Traffic Matrix estimation has always caught attention from researchers for better network management and future planning. With the advent of high traffic loads due to Cloud Computing platforms and Software Defined Networking based tunable routing and traffic management algorithms on the Internet, it is more necessary as ever to be able to predict current and future traffic volumes on the network. For large networks such origin-destination traffic prediction problem takes the form of a large under- constrained and under-determined system of equations with a dynamic measurement matrix. Previously, the researchers had relied on the assumption that the measurement (routing) matrix is stationary due to which the schemes are not suitable for modern software defined networks. In this work, we present our Compressed Sensing with Dynamic Model Estimation (CS-DME) architecture suitable for modern software defined networks. Our main contributions are: (1) we formulate an approach in which measurement matrix in the compressed sensing scheme can be accurately and dynamically estimated through a reformulation of the problem based on traffic demands. (2) We show that the problem formulation using a dynamic measurement matrix based on instantaneous traffic demands may be used instead of a stationary binary routing matrix which is more suitable to modern Software Defined Networks that are constantly evolving in terms of routing by inspection of its Eigen Spectrum using two real world datasets. (3) We also show that linking this compressed measurement matrix dynamically with the measured parameters can lead to acceptable estimation of Origin Destination (OD) Traffic flows with marginally poor results with other state-of-art schemes relying on fixed measurement matrices. (4) Furthermore, using this compressed reformulated problem, a new strategy for selection of vantage points for most efficient traffic matrix estimation is also presented through a secondary compression technique based on subset of link measurements. Experimental evaluation of proposed technique using real world datasets Abilene and GEANT shows that the technique is practical to be used in modern software defined networks. Further, the performance of the scheme is compared with recent state of the art techniques proposed in research literature.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.