• Title/Summary/Keyword: Optimization Technique

Search Result 2,674, Processing Time 0.036 seconds

A Model-based Methodology for Application Specific Energy Efficient Data path Design Using FPGAs (FPGA에서 에너지 효율이 높은 데이터 경로 구성을 위한 계층적 설계 방법)

  • Jang Ju-Wook;Lee Mi-Sook;Mohanty Sumit;Choi Seonil;Prasanna Viktor K.
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.451-460
    • /
    • 2005
  • We present a methodology to design energy-efficient data paths using FPGAs. Our methodology integrates domain specific modeling, coarse-grained performance evaluation, design space exploration, and low-level simulation to understand the tradeoffs between energy, latency, and area. The domain specific modeling technique defines a high-level model by identifying various components and parameters specific to a domain that affect the system-wide energy dissipation. A domain is a family of architectures and corresponding algorithms for a given application kernel. The high-level model also consists of functions for estimating energy, latency, and area that facilitate tradeoff analysis. Design space exploration(DSE) analyzes the design space defined by the domain and selects a set of designs. Low-level simulations are used for accurate performance estimation for the designs selected by the DSE and also for final design selection We illustrate our methodology using a family of architectures and algorithms for matrix multiplication. The designs identified by our methodology demonstrate tradeoffs among energy, latency, and area. We compare our designs with a vendor specified matrix multiplication kernel to demonstrate the effectiveness of our methodology. To illustrate the effectiveness of our methodology, we used average power density(E/AT), energy/(area x latency), as themetric for comparison. For various problem sizes, designs obtained using our methodology are on average $25\%$ superior with respect to the E/AT performance metric, compared with the state-of-the-art designs by Xilinx. We also discuss the implementation of our methodology using the MILAN framework.

A Dynamic Allocation Scheme for Improving Memory Utilization in Xen (Xen에서 메모리 이용률 향상을 위한 동적 할당 기법)

  • Lee, Kwon-Yong;Park, Sung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.147-160
    • /
    • 2010
  • The system virtualization shows interest in the consolidation of servers for the efficient utilization of system resources. There are many various researches to utilize a server machine more efficiently through the system virtualization technique, and improve performance of the virtualization software. These researches have studied with the activity to control the resource allocation of virtual machines dynamically focused on CPU, or to manage resources in the cross-machine using the migration. However, the researches of the memory management have been wholly lacking. In this respect, the use of memory is limited to allocate the memory statically to virtual machine in server consolidation. Unfortunately, the static allocation of the memory causes a great quantity of the idle memory and decreases the memory utilization. The underutilization of the memory makes other side effects such as the load of other system resources or the performance degradation of services in virtual machines. In this paper, we suggest the dynamic allocation of the memory in Xen to control the memory allocation of virtual machines for the utilization without the performance degradation. Using AR model for the prediction of the memory usage and ACO (Ant Colony Optimization) algorithm for optimizing the memory utilization, the system operates more virtual machines without the performance degradation of servers. Accordingly, we have obtained 1.4 times better utilization than the static allocation.

Analysis of Trace Levels of Lodinated Trihalomethanes in Water Using Headspace - GC/ECD (Headspace - GC/ECD를 이용한 수중의 미량 요오드계 트리할로메탄류 분석)

  • Son, Hee-Jong;Song, Mi-Jung;Kim, Kyung-A;Yoom, Hoon-Sik;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Trihalomethanes (THMs) are formed as a results of the reaction of residual chlorine, used as a disinfectant in drinking water, with the organic matter in raw water. Although chlorinated and brominated THMs are the most common disinfection byproducts (DBPs) reported, iodinated THMs (I-THMs) can be formed when iodide is present in raw water. I-THMs have been usually associated with several medicinal or pharmaceutical taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated and chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. An automated headspace-gas chromatography/electron capture detector (GC/ECD) technique was developed for routine analysis of 10 THMs including 6 I-THMs in water samples. The optimization of the method is discussed. The limits of detection (LOD) and limits of quantification (LOQ) range from 12 ng/L to 56 ng/L and from 38 ng/L to 178 ng/L for 10 THMs, respectively. Matrix effects in river water, sea water and wastewater treatment plant (WWTP) final effluent water were investigated and it was shown that the method is suitable for the analysis of trace levels of I-THMs, in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive.

Monte Carlo Simulation of a Varian 21EX Clinac 6 MV Photon Beam Characteristics Using GATE6 (GATE6를 이용한 Varian 21EX Clinac 선형가속기의 6 MV X-선 특성모사)

  • An, Jung-Su;Lee, Chang-Lae;Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.571-575
    • /
    • 2016
  • Monte Carlo simulations are widely used as the most accurate technique for dose calculation in radiation therapy. In this paper, the GATE6(Geant4 Application for Tomographic Emission ver.6) code was employed to calculate the dosimetric performance of the photon beams from a linear accelerator(LINAC). The treatment head of a Varian 21EX Clinac was modeled including the major geometric structures within the beam path such as a target, a primary collimator, a flattening filter, a ion chamber, and jaws. The 6 MV photon spectra were characterized in a standard $10{\times}10cm^2$ field at 100 cm source-to-surface distance(SSD) and subsequent dose estimations were made in a water phantom. The measurements of percentage depth dose and dose profiles were performed with 3D water phantom and the simulated data was compared to measured reference data. The simulated results agreed very well with the measured data. It has been found that the GATE6 code is an effective tool for dose optimization in radiotherapy applications.

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.

Determination of Optimal Unit Hydrographs and Infultration Rate Functions from Single Rainfall-Runoff Event (단순 강우-유출 사상으로부터 최적단위도와 침투율의 결정)

  • An, Tae-Jin;Ryu, Hui-Jeong;Jeong, Gwang-Geun;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.365-374
    • /
    • 2000
  • This paper is to present the determination of the optimal Joss rate parameters and urnt bydrographs from the observed single rainfall-runoff event using optimization models coupled with a stochastic technique for the global solution. Two kinds of the linear program models are formulated to derive the optimal unit hydrographs and loss rate parameters for gaged basins; one mimmizes the summation of the absolute residual between predlCted and observed runoff ordinates and the other, the maximum absolute residuaL Multistart algorithm which is one or stochastic techniques for the global optimum is adopted to perturb the parameters of the loss rate equations. Multistart efficiently searches the feasIble region to identify the global optimlUll for loss rate parameters, which yields the optimal loss rate parameters and unit hydrograph for Kostiakov's, Plulip's, and Horton's equation. The unique unit hydrograph ordinates for a gIven rainfall-runoff event iS exclusrvely obtained WIth $\Phi$ index, but unit hydrograph ordinates depend upon the parameters [or each loss rate equations. The parameters of Green-Ampt's are determined through a trial and error method. In this paper the single rainfall-nmoff event observed from a watershed is considered to test the proposed method. The optimal unit hydrograph herein found has smaller deviations than the ones reported previously by other researchers.

  • PDF

Optimal Sensor Allocation for Health Monitoring of Roller-Coaster Structure (롤러코스터의 모니터링을 위한 최적 센서 구성)

  • Heo, Gwang Hee;Jeon, Seung Gon;Park, In Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.165-174
    • /
    • 2011
  • This research aims at the optimal constitution of sensors required to identify the structural shortcoming of roller-coaster. In this research we analyzed the dynamic characteristics of roller-coaster by three dimensional FE modelling, decided on the appropriate location and number of sensors through optimal transducer theory, abstracted the mathematical value of modal features before and after damage on the basis of optimally placed and numbered sensors. and then presented it as a primary information about the basic structure which would be applied to damage estimation. As a target structure, the roller-coater at Seoul Children's Grand Park was chosen and built as a model reduced by one twentieth in size. In order to consider the Kinetics features particular to the roller-coaster structure, we made an exact three-dimensional FE modelling for the model structure by means of Spline function. As for the proper location and number of sensors, it was done by applying EIM and EOT. We also estimated the damage from the combination of strength, flexibility, and model corelation after abstracting the value of modal features. Finally the optimal transducer theory presented here in this research was proved to be valid, and the structural damage was well identified through changes in strength and flexibility. As a result, we were able to present the optimal constitution of sensors needed for the analysis of dynamic characteristics and the development of techniques in dynamic characteristics, which would ultimately contribute to the development of health monitoring for roller-coaster.

Bioconjugation by dual heterobifunctional coupling method: Use of the conjugates for the detection of dopamine (서로 다른 두 작용기를 이용한 결합법에 의한 접합체: 도파민 면역분석법)

  • Ryu, Ji-Eun;Rhee Paeng, In-Sook
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.537-543
    • /
    • 2010
  • Dopamine (DA) is an important neurotransmitter molecule of catecholamines. Its deficiency could lead to brain disorder such as Parkinson's disease and schizophrenia. Therefore, it is necessary to establish a suitable analytical technique with sensitivity and simplicity. A competitive enzyme-linked immunosorbent assay for DA has been optimized and characterized. Assay sensitivity is controlled by two factors in competitive immunoassay. One is a nature and concentration of competitor, and the other is those of binder, antibody. Thus, optimization was performed: BSA-DA conjugate and antibody-avidin conjugate were prepared by dual heterobifunctional coupling method using SATA and SMCC. Assay condition was optimized with $6.66\;{\mu}gmL^{-1}$ of BSA-DA and $4.17{\times}10^{-10}\;M$ of antibody-avidin conjugate. A dose-response curve was constructed, and a limit of detection and a dynamic range for DA were accomplished to $2.3{\times}10^{-2}\;{\mu}g\;mL^{-1}$ and four orders of magnitude ($1.0{\times}10^{-7}\;M$ to $1.0{\times}10^{-3}\;M$), respectively. Calibration curve was constructed on dynamic range and least-squares regression of this data gave the following relationship: absorbance = -0.1098 log[DA]+0.0353 ($R^2$ = 0.9956).

The Variation of Tagging Contrast-to-Noise Radio (CNR) of SPAMM Image by Modulation of Tagline Spacing (Tagline 간격의 조절을 통한 SPAMM 영상에서의 Tagging 대조도 대 잡음비의 변화)

  • 강원석;최병욱;최규옥;이상호;홍순일;정해조;김희중
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.224-228
    • /
    • 2002
  • Myocardial tagging technique such as spatial modulation of magnetization (SPAMM) allows the study of myocardial motion with high accuracy. However, the accuracy of the estimation of tag intersection can be affected by tagline spacing. The aim of this study was to investigate the relationship between tagline spacing of SPAMM image and tagging contrast-to-noise ratio (CNR) in in-vivo study. Two healthy volunteers were undergone electrocardiographically triggered MR imaging with SPAMM-based tagging pulse sequence at a 1.5T MR scanner. Horizontally modulated stripe patterns were imposed with a range from 3.6 to 9.6 mm of tagline spacing. Images of the left ventricle(LV) wall were acquired at the mid-ventricle level during cardiac cycle with FE-EPI (TR/TE = 5.8/2.2 msec, FA= 10$^{\circ}$. Tagging CNR for each image was calculated with a software which developed in our group. During contraction, tagging CNR was more rapidly decreased in case of narrow tagline spacing than in case of wide tagline spacing. In the same heart phase, CNR was increased corresponding with tagline spacing. Especially, at the fully contracted heart phase, CNR was more rapidly increased than the other heart phases as a function of tagline spacing. The results indicated that the optimization of tagline spacing provides better tagging CNR in order to analyze the myocardial motion more accurately.

  • PDF

Quasi-Static Equilibrium of a Propeller Shaft in a Hydrodynamic Oil-Lubricated Stern Tube Bearing (윤활유(潤滑油) 선미관(船尾管) 베어링 축계(軸系)의 준정적(準靜的) 평형상태(平衡狀態)에 관한 연구(硏究))

  • S.Y.,Ahn;S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.51-61
    • /
    • 1989
  • Recently, the growth in the propulsion power and propeller size of typical energy saving ships has resulted in severe damages of the oil-lubricated stern tube bearing. Consequently, a more rational analytical method for the design of the shafting system is required. In this paper an analytical method applicable to the design of the oil-lubricated stern tube bearing and shafting system is presented. The method consists of the finite element analysis of the shafting system and the oil film hydrodynamics. The shafting system is modeled as a three-dimensional problem using beam elements taking account for the steady components of thrust, lateral forces and moments of the propeller as well as the elastic foundation effects. The oil film hydrodynamics is modeled as a two-dimensional problem. Equal and retangular elements employing hourglass control method are used for the construction of the oil film fluidity matrix. To search the quasi-static equilibrium position between the propeller shaft and the oil film, an optimization technique is employed. Some numerical results based on the proposed method are compared with some measured and numerical data available. They show acceptable agreements with the data.

  • PDF