• Title/Summary/Keyword: Optimization Technique

Search Result 2,698, Processing Time 0.031 seconds

Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique (홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model (단순유한요소모델을 이용한 차체필라 형상최적설계)

  • 이상범
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

Hybrid Structural Control System Design Using Preference-Based Optimization (선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계)

  • Park, Won-Suk;Park, Kwan-Soon;Koh, Hyun-Moo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.

A Comparative Study of Genetic Algorithm and Mathematical Programming Technique applied in Design Optimization of Geodesic Dome (지오데식 돔의 설계최적화에서 유전알고리즘과 수학적계획법의 비교연구)

  • Lee, Sang-Jin;Lee, Hyeon-Jin
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.101-106
    • /
    • 2008
  • This paper describes a comparative study of genetic algorithm and mathematical programming technique applied in the design optimization of geodesic dome. In particular, the genetic algorithm adopted in this study uses the so-called re-birthing technique together with the standard GA operations such as fitness, selection, crossover and mutation to accelerate the searching process. The finite difference method is used to calculate the design sensitivity required in mathematical programming techniques and three different techniques such as sequential linear programming (SLP), sequential quadratic programming(SQP) and modified feasible direction method(MFDM) are consistently used in the design optimization of geodesic dome. The optimum member sizes of geodesic dome against several external loads is evaluated by the codes $ISADO-GA{\alpha}$ and ISADO-OPT. From a numerical example, we found that both optimization techniques such as GA and mathematical programming technique are very effective to calculate the optimum member sizes of three dimensional discrete structures and it can provide a very useful information on the existing structural system and it also has a great potential to produce new structural system for large spatial structures.

  • PDF

Multidisciplinary Design Optimization of Vehicle Front Suspension System Using PIDO Technology (PIDO 기술을 이용한 차량 전륜 현가계의 다분야통합최적설계)

  • Lee, Gab-Seong;Park, Jung-Min;Choi, Byung-Lyul;Choi, Dong-Hoon;Nam, Chan-Hyuk;Kim, Gi-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • Multidisciplinary design optimization (MDO) for a suspension component of the vehicle front suspension was performed in this research. Shapes and thicknesses of the subframe were optimized to satisfy multi-disciplinary design requirements; weight, fatigue, crash, noise, vibration, and harshness (NVH), and kinematic and compliance (K&C). Analyses procedures of the performance disciplines were integrated and automated by using the process integration and design optimization (PIDO) technique, and the integrated and automated analyses environments enabled various types of analytic design methodologies for solving the MDO problem. We applied an approximate optimization technique which involves sequential sampling and metamodeling. Since the design variables for thicknesses should be dealt as discrete variables. the evolutionary algorithm is selected as optimization technique. The MDO problem was formulated three types of problems according to the order of priorities among the performance disciplines, and the results of MDO provided design alternatives for various design situations.

The Effect of Rebirthing Technique on GA-based Size Optimization

  • LEE, Sang-Jin;LEE, Hyeon-Jin
    • Architectural research
    • /
    • v.11 no.2
    • /
    • pp.19-26
    • /
    • 2009
  • The effect of rebirthing technique on the genetic algorithm (GA)-based size optimization is investigated. The GA mimics the principles of nature and it can gradually improve structural design through biological operations such as fitness, selection, crossover and mutation. However, premature optimum has been often detected in the generic GA with continuous design variable. Since then, the so-called rebirthing technique has been proposed to avoid this problem. However, the performance of the rebirthing technique has not been reported. Therefore, the size optimizations of spatial structures are tackled to investigate the performance of the rebirthing technique on the generic GA. From numerical results, it is well proved that the rebirthing technique is very effective to produce the optimum values regardless of the values of parameters used in the GA operations.

Delaunay mesh generation technique adaptive to the mesh Density using the optimization technique (최적화 방법을 이용한 Delaunay 격자의 내부 격자밀도 적응 방법)

  • Hong J. T.;Lee S. R.;Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.75-78
    • /
    • 2004
  • A mesh generation algorithm adapted to the mesh density map using the Delaunay mesh generation technique is developed. In the finite element analyses of the forging processes, the numerical error increases as the process goes on because of discrete property of the finite elements or severe distortion of elements. Especially, in the region where stresses and strains are concentrated, the numerical discretization error will be highly increased. However, it is too time consuming to use a uniformly fine mesh in the whole domain to reduce the expected numerical error. Therefore, it is necessary to construct locally refined mesh at the region where the error is concentrated such as at the die corner. In this study, the point insertion algorithm is used and the mesh size is controlled by moving nodes to optimized positions according to a mesh density map constructed with a posteriori error estimation. An optimization technique is adopted to obtain a good position of nodes. And optimized smoothing techniques are also adopted to have smooth distribution of the mesh and improve the mesh element quality.

  • PDF

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.