• Title/Summary/Keyword: Optimization Methods

Search Result 2,825, Processing Time 0.03 seconds

A Study on Optimization of Road Cave-In Management System Components (도로함몰관리체계 구성요소 최적화방안 연구)

  • Yeon, Gyumin;Park, Jihoon;Kim, Intai
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.117-127
    • /
    • 2017
  • PURPOSES : The objective of this research is establishing system components and optimizing operational procedures in order to systematically manage road cave-ins in urban areas. METHODS : Based on the literature review and alternative comparison, optimization methods is suggested. RESULTS : Throughout the study, location referencing system, database structure, and operation strategy(procedure) were clarified, and the optimization methods for each item were suggested. CONCLUSIONS : Road cave-in management should be focused on user safety rather than focusing on economic aspects. The occurrence of road cave-in should be addressed thoroughly by road management system(location referencing system, database structure, and operation strategy(procedure), and the optimization methods), since they are closely related to road users' safety.

Size Optimization Design Based on Maximum Stiffness for Structures (구조물의 최대강성 치수최적설계)

  • Shin, Soo-Mi;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • This study presents a structural design optimizing sizes of high-rise steel plane truss members by maximizing stiffness subjected to given volume constraints. The sizing optimum design is evaluated by using a well-known optimality criteria (OC) of gradient-based optimization methods. In typical size optimization methods, truss structures are optimized with respect to minimum weight with constraints on the value of some displacement and on the member stresses. The proposed method is an inversed size optimization process in comparisons with the typical size optimization methods since it maximizes stiffness associated with stresses or displacements subjected to volume constraints related to weight. The inversed approach is another alternative to classical size optimization methods in order to optimize members' sizes in truss structures. Numerical applications of a round shape steel pipe truss structure are studied to verify that the proposed maximum stiffness-based size optimization design is suitable for optimally developing truss members's sizes.

Optimization of HE-AAC for Korean S-DMB Using TMS320C55x DSP Core

  • Kim, Hyung-Jung;Jee, Deock-Gu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.137-141
    • /
    • 2006
  • This paper presents HE-AAC decoder optimization on TMS320C55x fixed-point DSP core using a DSP-C like FFR code, which provides fast and flexible porting to a DSP core. Our optimization efforts are focused on methodologies that include general optimization methods of FFR code suitable for general DSP or RISC platform in high-level language and software optimization methods in assembly language level. The implementation result requires 48 MIPS and 135 Kbytes memory space to decode 48 Kbps stereo using real Korean S-DMB data.

The Aerodynamic Shape Optimization with Trust Region Methods (Trust Region 기법을 이용한 공력 형상 최적설계)

  • Lee, Jae-Hun;Jung, Kyung-Jin;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.130-133
    • /
    • 2008
  • In this paper the trust region method is studied and applied in aerodynamic shape optimization. The trust region method is a gradient-based optimization method, but it is not as popular as other methods in engineering computations. Its theory will be explained for unconstrained optimization problems and a trust region subproblem will be solved with the dogleg method. After verifying the trust region method with analytical test problems, it is applied to aerodynamic shape design optimization and the performance of airfoil is improved successfully.

  • PDF

Prediction of Protein Tertiary Structure Based on Optimization Design (최적설계 기법을 이용한 단백질 3차원 구조 예측)

  • Jeong Min-Joong;Lee Joon-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.841-848
    • /
    • 2006
  • Many researchers are developing computational prediction methods for protein tertiary structures to get much more information of protein. These methods are very attractive on the aspects of breaking technologies of computer hardware and simulation software. One of the computational methods for the prediction is a fragment assembly method which shows good ab initio predictions at several cases. There are many barriers, however, in conventional fragment assembly methods. Argues on protein energy functions and global optimization to predict the structures are in progress fer example. In this study, a new prediction method for protein structures is proposed. The proposed method mainly consists of two parts. The first one is a fragment assembly which uses very shot fragments of representative proteins and produces a prototype of a given sequence query of amino acids. The second one is a global optimization which folds the prototype and makes the only protein structure. The goodness of the proposed method is shown through numerical experiments.

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

New Parameterizations for Multi-Step Unconstrained Optimization

  • Moghrabi, I.A.;Kassar, A.N
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • We consider multi-step quasi-Newton methods for unconstrained optimization. These methods were introduced by Ford and Moghrabi [1, 2], who showed how interpolating curves could be used to derive a generalization of the Secant Equation (the relation normally employed in the construction of quasi-Newton methods). One of the most successful of these multi-step methods makes use of the current approximation to the Hessian to determine the parameterization of the interpolating curve in the variable-space and, hence, the generalized updating formula. In this paper, we investigate new parameterization techniques to the approximate Hessian, in an attempt to determine a better Hessian approximation at each iteration and, thus, improve the numerical performance of such algorithms.

  • PDF

Computational Approaches for the Aerodynamic Design and Optimization

  • Lee, Jae-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.28-29
    • /
    • 2006
  • Computational approaches for the aerodynamic design and optimization are introduced. In this paper the aerodynamic design methods and applications, which have been applied to various aerospace vehicles at Konkuk University, are introduced. It is shown that system approximation technique reduces computational cost for CFD analysis and improves efficiency for the design optimization process.

  • PDF

Comparative Study on Reliability-Based Topology Optimization (신뢰성 기반 위상최적화에 대한 비교 연구)

  • Cho, Kang-Hee;Hwang, Seung-Min;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.412-418
    • /
    • 2011
  • Reliability-based Topology optimization(RBTO) is to get an optimal design satisfying uncertainties of design variables. Although RBTO based on homogenization and density distribution method has been done, RBTO based on BESO has not been reported yet. This study presents a reliability-based topology optimization(RBTO) using bi-directional evolutionary structural optimization(BESO). Topology optimization is formulated as volume minimization problem with probabilistic displacement constraint. Young's modulus, external load and thickness are considered as uncertain variables. In order to compute reliability index, four methods, i.e., RIA, PMA, SLSV and ADL(adaptive-loop), are used. Reliability-based topology optimization design process is conducted to obtain optimal topology satisfying allowable displacement and target reliability index with the above four methods, and then each result is compared with respect to numerical stability and computing time. The results of this study show that the RBTO based on BESO using the four methods can effectively be applied for topology optimization. And it was confirmed that DLSV and ADL had better numerical efficiency than SLSV. ADL and SLSV had better time cost than DLSV. Consequently, ADL method showed the best time efficiency and good numerical stability.

A Study on the Global Optimization Using the Alienor Method and Lipschitzian Optimization (Alienor Method와 Lipschitzian Optimization을 이용한 전역적 최적화에 대한 연구)

  • Kim, Hyoung-Rae;Lee, Na-Ri;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.212-217
    • /
    • 2007
  • The Alienor method is a powerful tool for solving global optimization problems. It allows the transformation of a multi-variable problem into a new one that depends on a single variable. Any one-dimensional global optimization method can then be used to solve the transformed problem. Several one-dimensional global optimization methods coupled with the Alienor method have been suggested by mathematicians and it is shown that the suggested methods are successful for test functions. However, there are problems with these methods in engineering practice. In this paper, Lipschitzian optimization without using the Lipschitz constant is coupled with the Alienor method and applied to the test functions. Using test functions, it is shown that the suggested method can be successfully applied to global optimization problems.