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Abstract

We consider multi-step quasi-Newton methods for unconstrained optimization.

These methods were introduced by Ford and Moghrabi [1, 2], who showed how in-

terpolating curves could be used to derive a generalization of the Secant Equation

(the relation normally employed in the construction of quasi-Newton methods).

One of the most successful of these multi-step methods makes use of the current

approximation to the Hessian to determine the parameterization of the interpo-

lating curve in the variable-space and, hence, the generalized updating formula.

In this paper, we investigate new parameterization techniques to the approximate

Hessian, in an attempt to determine a better Hessian approximation at each iter-

ation and, thus, improve the numerical performance of such algorithms.

1 INTRODUCTION

We will consider two-step quasi-Newton methods (in contrast to the standard, more

commonly-used one-step methods) for the unconstrained optimization problem

minf(x); where x 2 R
n.

Denoting, the gradient and Hessian of f by g and G, respectively,. we note that

such methods closely resemble standard (one-step) quasi-Newton methods, with the

exception that the approximation Bi+1 to the Hessian G(xi+1) is now required to

satisfy a condition of the following form:

Bi+1(si � 
isi�1) = yi � 
iyi�1; (1)

or

Bi+1ri = wi; (2)

say, instead of the more usual condition
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Bi+1si = yi; (3)

commonly known as the Secant Equation. (In (1) and (3), si and yi are de�ned by

si = xi+1 � xi; (4)

yi = g(xi+1)� g(xi); (5)

where fxig are the iterates produced by the method under consideration.) The deriva-

tion of (1) is described by Ford and Moghrabi [1, 2]. Quadratic (because we are using

data from the last two steps) curves x(�) and u(�) (where � 2 R) are constructed which

interpolate, respectively, the three most recent iterates xi�1; xi and xi+1, and the three

associated gradient evaluations (which are assumed to be available). The derivatives

of these two curves (at � = �2 , where �j is the value of � for which x(�j) = xi�1+j are

then substituted into the relation (derived from applying the Chain Rule to g(x(�)):)

G(xi+1)x
0(�2) = g

0(x(�2)); (6)

where primes denote di�erentiation with respect to � . (It is important, at this point,

to note particularly that

wi

def
= u0(�2) (7)

is, in general, only an approximation to the term g
0(x(�2)) that is required in (6),

whereas

ri
def
= x

0(�2) (8)

may be computed exactly.) On making these substitutions into (6) and removing a

common scaling factor. we obtain a relation of the form (1) for Bi+1 � G(xi+1) to

satisfy. Bi+1 may then be obtained (for example) by use of an appropriately modi�ed

version of the BFGS formula (Broyden [31., Fletcher [4], Goldfarb [51, Shanno [6]):

Bi+1 = Bi �
Birir

T

i
Bi

r
T

i
Biri

+
wiw

T

i

w
T

i
ri

(9)

def
= BFGS(Bi; ri; wi): (10)
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The term �i in (1) is an expression depending on the three values �0; �1and �2: it

is therefore evident (and numerical evidence strongly reinforces the point) that it is

necessary to choose these three values with some care, since the updating of the Hessian

approximation (and, therefore, the numerical performance of such an algorithm) is

determined by the value of 
i. One successful approach to the issue of de�ning suitable

values for f�kg
2

k=0
was described by Ford and Moghrabi [2].Their choices were such

that to re
ect distances between iterates xj , in R
n are measured by using a norm of

the general form

kzkM = fz
T
Mzg

1=2
;

where M is a symmetric-positive-de�nite matrix. . This leads to the following de�ni-

tions for the set f�kg
2

k=0
(where, without loss of generality, we take �2 to be the origin

for values of � ,

��1 = �2 � �1 = kx(�2)� x(�1)kM = kxi+1 � xikM = ksikM ; (11)

nd

��0 = �2 � �0 = kx(�2)� x(�0)kM = ksi + si�1kM : (12)

By this means, the relative values assigned to the scalars f�kg
2

k=0
re
ect the distances

between the corresponding iterates in the variable-spaces.Several possible choices for

the weighting matrix M were considered by Ford and Moghrabi [2]:

M = I;

M = Bi;

M = Bi+1:

Of these, the most successful (from a numerical point of view) was found to be

M = Bi: However, usingM = Bi means that we need to be able to compute expressions

such as Bisi and Bisi�1cheaply (compare equations (11), (12) and (13)), so that the

overheads of implementing such a method do not reduce or even cancel out any savings

that might otherwise accrue from the multi-step approach. These quantities can be

computed with little expense ([2, 7]) if we assume that the new iterate xi+1 has been

obtained by (say) a line search along, the direction pi = �B
�1

i
g(xi);which implies

that Bisi = �tig(xi);for some (known) positive scalar ti . Also (see [21]) we can

approximate Bisi�1 with yi�1, or (see [7]) alternate on successive iterations with a

standard one-step method, so that Bi will satisfy the Secant Equation (Bisi�1 = yi�1)

exactly. (Similar techniques may be applied for the choice M = Bi+1:) In this manner,

a working algorithm may be developed that does not (for non-trivial problems) require

signi�cantly greater computational e�ort than (say) a standard one-step quasi-Newton

algorithm such as the BFGS method and which does yield substantial bene�ts, in terms

of the number of function evaluations and iterations that are required.
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2 New Parameterizations

In this paper, we will describe research that seeks to construct an algorithm that at-

tempts to improve upon those outlined the previous section. This is done by calculating,

on the one hand, an updated version of Bi � G(xi) to use as the weighting matrix M

which de�nes the norms (see equations (12) and (13)). From this matrix we can com-

pute the norms which are required to de�ne the values f�kg
2

k=0
and, hence, the precise

form of the condition (equation 1) which will be employed to determine Bi+1 � G(xi+1)

. (At this point, we draw attention to the fact that our particular focus here is upon

obtaining an updated version of Bi [to be used in the calculation of the norms] and not

on computing Bi+1, which comes at a later point in the algorithm.) However, in view of

the same considerations of computational e�ciency as before, we wish to avoid the ex-

pense of actually calculating the updated form of Bi and we will therefore demonstrate

(for each of the methods we develop) how the required expressions may be computed

by means of cheap computations, using a simple recurrence, or by means of implicit

updates [9]. On the other hand, we try to avoid resorting to approximations of the

sort Bisi�1 � yi�1, by constructing a simple recurrence that is made up of quantities

already computed at each iteration, as part of the update process to the matrix.

2.1 Method N1

This method derives again from considering the metricM = Bi: In order to compute the

norms required in the de�nitions (equations (12) and (13)) of the values for f�kg
2

k=0
; we

need to be able to calculate the quantities sT
i
Msi; s

T

i�1
Msi and s

T

i�1
Msi�1:

As for sT
i
Msi;we work on the assumption that a standard linesearch is used at

each iteration such that Bisi = �tig(xi); and hence the expression is readily available.

Similar argument applies to s
T

i�1
Msi.

As for sT
i�1

Msi�1;we de�ne the following expression[using (9)]:

s
T

i�1Msi�1 = s
T

i�1ui � [uTi�1ri�1]
2
=r

T

i�1Bi�1ri�1 + (sTi�1wi�1)
2
=r

T

i�1wi�1; (13)

where uj = Bjsj = �tjg(xj).

Here we do not have to use the approximation (as before [2,9]) Bisi�1 � yi�1: It

should be noted here that the denominators in the above expression are readily available

from the approximate Hessian update computations at each iteration.

2.2 Method N2

In this case, M is taken to be the result of applying the standard BFGS update to Bi,

using si and yi :

M = BFGS(Bi; si; yi) =
^

Bi; say (14)
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Normally, the result of the expression BFGS(Bi; si; yi) would be regarded as con-

stituting an approximation to G(xi+1), but it is straightforward to show [for example,

by temporarily regarding the step as having been made 'backwards' from xi+1to xi]

that the following approximate relation may be derived:

G(xi)(xi � xi+1) � (g(xi)� g(xi+1));

or

G(xi)si � yi;

from which we infer that it is legitimate to regard
^

Bi, as an approximation to G(xi) to

compute the norms required in the de�nitions (equations (12) and (13)) of the values

for f�kg
2

k=0
we need (like before) to be able to calculate the expressions

s
T

i Msi; s
T

i�1Msi and s
T

i�1Msi�1;

where M =
^

Bi. We now show that this is possible without explicit computation of the

matrix
^

Bi: �rst, by the Secant Equation,

Msi = [BFGS(Bi; si; yi)]si = yi:

Therefore,

s
T

i
Msi = s

T

i
yi:

s
T

i�1
Msi = s

T

i�1
yi

Second,

s
T

i�1
Msi�1 = s

T

i�1
[BFGS(Bi; si; yi)]si�1

= s
T
i�1

Bisi�1 � (sT
i�1

Bisi)
2
=s

T
i
Bisi + (sT

i�1
yi)

2
=s

T
i
yi

= �i�1 + (sT
i�1

gi)
2
=p

T
i
gi + (sT

i�1
yi)

2
=s

T
i
yi;

where �i�1 is as in (14) and again, we are not using the approximation Bisi�1 � yi�1:

2.3 Method N3

This time, we employ the three latest iterates to obtain a revised estimate Bi, say, of

G(x), from which we will compute a �nal version of the set f�kg
2

k=0
:We do this by �rst

assuming that an initial estimate f�kg
2

k=0
is available (for examples by use of equations

(12) and (13) and the weighting M = Bi):Then we can construct an initial quadratic

interpolation fx(�)g; from which we may calculate the two derivatives.

ri = x
0(�1);

wi = u
0(�1):

Recalling that �1 corresponds to the iterate xi, we can therefore (implicitly) compute

the following revised estimate of G(xi):
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Bi = BFGS(Bi; si; wi)

Finally, we use the revised estimate Bi as the weighting matrix M with which to

calculate a �nal version of the set f�kg
2

k=0
(see (12) and (13)). In order to be able to

perform this computation e�ciently, we need to be able to compute cheaply the terms

Bisi�1 and Bisi (from which we can easily obtain all the expressions required for the

norms de�ning the set f�kg
2

k=0
). We demonstrate in stages that it is possible to achieve

this goal (once more, without explicitly carrying out the update): �rst, since (ignoring

a common scaling factor)

ri = si + �
2
si�1;

wi = yi + �
2
yi�1;

where

� = (�2 � �1)=(�1 � �0);

it follows, from Biri = wi;that

Bisi�1 = yi�1 + �
�2[yi �Bisi];

so it is only necessary to be able to compute Bisi . Second, from the BFGS updating

formula used to calculate Bi, we have:

Bisi = BFGS(Bi; si; wi)si

= fBisi � [rTi Bisi=r
T

i Biri]Birig+ (sTi wi=r
T

i wi)wi

= qi + �iwi; (15)

say.

The scalar �i is clearly computable, so the only remaining problem lies in the calculation

of qi: Next if we de�ne

zi = Biri;

then, since

Bisi = �tig(xi);

we have (by comparison of equations (16) and (17))

Bisi = �tig(xi) + [tir
T
i
g(xi)=r

T
i
zi]zi:

Finally, to determine zi we have

zi = Bi[si + �
2
si�1]

= �tig(xi) + �
2
ai�1;

for ai�1 = ui�1 �Bi�1ri�1[u
T

i�1
ri�1]=r

T

i�1
Bi�1ri�1 +wi�1(w

T

i�1
si�1)=r

T

i�1
wi�1;

where uj = Bjsj = �tjg(xj).

Thus, successively, we are able to compute

zi; qi; Bisi and Bisi�1;

and hence we may determine the required values f�kg
2

k=0
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3 NUMERICAL EXPERIMENTS

The algorithmsN1, N2 andN3 developed in Section 2 were compared with each other

and with the standard, single-step, BFGS method, in our �rst set of experiments. All

the multi-step algorithms tested in these and the following experiments employed the

BFGS formula to update the Hessian approximations B
i
, but with the usual vectors si

and yi replaced by the forms of ri and wi, (see (9)) appropriate to that algorithm:

The set of test functions employed in the tests is the one described in [1], with

a small number of modi�cations to starting-points and convergence criteria. This set

contains a total of sixty functions and was chosen from standard problems described

in the literature, such as the article by More', Garbow and Hillstrom [8]. For each

function, four di�erent starting-points were used, giving a total of 240 test problems.

For convenience, the functions were classi�ed (on a somewhat arbitrary basis) into

those of "low" (2 � n � 15), "medium" (16 � n � 45) and "high" (46 � n � 80)

dimension. In total, there were 10 functions in the "low" set and 25 functions in each

of the "medium" and "high" sets, giving respectively, 40, 100 and 100 test problems

in the three sets. Further information on the functions and the starting-points used,

together with details on the implementation of such algorithms, may be found [I].

Summaries of the results from this �rst set of experiments are presented in Table

1. For each method, the total number of function / gradient evaluations required to

solve all the problems in the given test set is stated, followed by the total number of

iterations (in brackets).

Table 1: Comparison of N1, N2 and N3 with BFGS

N1 N2 N3 BFGS Prob.

Totals 4771 (3584) 5078(3675) 4815(3712) 5124(3927)

Ratios 93.1% (91.3%) 99.1%(93.6%) 93.96%(94.52%) 100%(100%) Lo

Scores 13 7 13 10

Totals 15811(13791) 17738(15343) 15953 (13815) 20987(18997)

Ratios 84.52%(80.76%) 84.570(80.8%) 76.07 (72.7%) 100% (100%) Med

Scores 60 11 29 10

Totals 12912(12088) 14698 (136 75) 12735 (11610) 18575(17694)

Ratios 79.12%(68.31%) 79.1% (77.3%) 68.6% (65.6%) 100%(100%) Hi

Scores 39 10 47 11

Totals 33538(29591) 37514 (32693) 33459 (29009) 44686 (40618)

Ratios 75.05%(72.85%) 84.0%, (80.5%) 74.9% (71.4%) 100%(100%) Combined

Scores 12 46 177 37

The entries in each row labelled 'Ratios' give the proportions of evaluations and

iterations, respectively, eachexpressed as a percentage of the corresponding �gure for the

BFGS method. For each test problem, the best performance (decided on the basis of the

number of evaluations, with ties resolved by the number of iterations) was determined,
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and the rows labelled 'Scores' show the total number of best performances by the 1ven

method for the test set under consideration.

On the basis of the results summarized in Table 1, it was concluded that, while both

of the new methods showed signi�cant gains over the standard BFGS method, B clearly

exhibited the better performance of the two new methods. It was therefore decided to

test 13 further, by comparing it with earlier successful two-step methods (namely, F2

(Ford and Moghrabi [2]) and F21 (Ford and Moghrabi [7])). These experiments were

carried out on the same set of test functions and the results are summarized in Table

2.

4 SUMMARY AND CONCLUSIONS

A technique for producing new parameterization for multi-step quasi-Newton meth-

ods.These parameterizations are devised for the interpolating curves which are the

basis of the multi-step approach. It has been demonstrated that the computational

cost of calculating the updated approximation can be avoided, since the expressions

which are required in order to determine the interpolating curves may be computed

'cheaply'.

Table 2: Comparison of N3 with F2 and F21

N3 F2 F21 Problem

totals 4771 (3584) 4993(3630) 4830 (3641)

ratios 93.1% (91.3%) 97.4 % (92. 4%) 94.3%(92.7%) low

scores 19 9 14

totals 15953(13815) 16895 (14264) 15806 (13359)

ratios 76.0% (72.7%) 80.5%(75.1%) 75.3%(70.3%) medium

scores 25 24 61

totals 12735 (11610) 13156 (11712) 12349 (10575)

scores 68.6%(65.6%) 70.8% (66.2%) 66.5% (59.8%) high

totals 20 19 66

ratios 33459 (29009) 35044(29606) 32985 (27575)

scores 74.9% (71.4%) 78.4% (72.9%) 73.8% (67.9%) combined

totals 64 52 141
The numerical evidence provided by the tests reported in Table 1 demonstrates

clearly that both of the new methods N1, N2 and N3 show signi�cant improve-

ments, when compared with the standard, single-step, BFGS method. In particular,

N3 yielded, on average, improvements in the range 30 - 35%, on the problems with

the highest dimensions amongst those studied.The results reported in Table 2 further

indicate that, while I3 does appear to o�er some improvement over the method from

which it was developed (namely, F2), it is not yet quite competitive with F21, another

development of F2. We are currently investigating the issue of whether the numerical

performance of similar methods can be improved further.
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