• Title/Summary/Keyword: Optimization

Search Result 21,474, Processing Time 0.057 seconds

Monitoring for optimum antioxidant extraction condition of Gugija (Lycium chinensis Mill) extract (구기자 추출물의 최적 항산화 추출조건 모니터링)

  • Kim, Hak-Yoon;Lee, Gee-Dong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.451-460
    • /
    • 2017
  • This study optimized the extraction of antioxidants from Gugija (Lycium chinensis Mill). To determine operational parameters, including ethanol concentration ($X_1$, 0~80%) and extraction time ($X_2$, 1~5 hr), response surface methodology was applied to monitor yield, anthocyanins, flavonoids and DPPH radical scavenging activity. Coefficients of determinations ($R^2$) of the models were range of 0.8645~0.9859 (p<0.01~0.1) in dependant parameters. Yield of Gugija extracts was maximized 23.12% in extraction conditions of 4.22 h at 8.25% ethanol. Anthocyanins was maximized 1.43 (OD in 530 nm) in extraction conditions of 3.06 h at 79.98% ethanol. Flavonoids was maximized $3,100{\mu}g/100g$ in extraction conditions of 3.37 h at 67.02% ethanol. DPPH radical scavenging activity was maximized 96.93% in extraction conditions of 1.67 h at 69.81% ethanol. Optimum extraction conditions (2.5 h extraction at 70% ethanol) were obtained by superimposing the contour maps with regard to anthocyanins, flavonoids and DPPH radical scavenging activity of Gugija. Maximum values of anthocyanins, flavonoids and DPPH radical scavenging activity in optimum extraction condition were 1.0080 (OD in 530 nm), $3,145{\mu}g/100g$, 96.96%, respectively. But values of anthocyanins, flavonoids and DPPH radical scavenging activity in water extraction condition (1 h at water) were 0.4652 (OD in 530 nm), $1,633{\mu}g/100g$, 86.98%, respectively.

Optimization of Light Source Combination through the Illuminance and Color Temperature Simulation of Circadian Lighting Apparatus (감성조명용 조명기기의 조도 및 색온도 시뮬레이션을 통한 광원 조합의 최적화)

  • Park, Yang-Jae;Choi, Jong-Hyun;Jang, Myong-Gi
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.248-254
    • /
    • 2009
  • The aim of this study is to optimize the light source combination which can maximize the capability of the illuminance and color temperature of circadian lighting apparatus. To achieve this goal, the circadian lighting apparatus was consisted of two different types of fluorescent lamps having different color temperature of 2000K and 8000K, respectively, and the capability of the illuminance and color temperature of circadian lighting apparatus was evaluated by optical simulation as the number of the respective lamps were varied. Considering the Kruithof's curve and exceptional cases, the ranges of illuminance and color temperature for the living activities were reclassified in 4 groups - gathering, studying, relaxing and sleeping - so that the target range of illuminance and color temperature of lighting apparatus was settled. As a result, in the case of adopting two fixtures in which four 2000K lamps and five 8000K lamps were consisted, respectively to one fixture, the highest illuminance was expected at 4000K and over 500lx of illuminance was calculated between 3000K and 6000K. Through the optimized combination of light sources, the range of illuminance and color temperature were calculated as $44{\sim}750lx$ and $2500{\sim}6500K$, respectively.

Analysis of Individual Exposure Dose of Workers and Clinical Practice Students in Radiation Management Area (방사선관리구역내의 종사자 및 임상실습 학생의 개인피폭선량 비교 분석)

  • Lee, Joo-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.383-388
    • /
    • 2017
  • The purpose of this study was to compare radiation dose among workers in the radiation zone and to compare the doses of students in clinical practice in the same area to provide basic data on optimization of radiation protection. The subjects were 121 radiation related workers, 36 radiation workers, and 121 students who completed 8 weeks of clinical practice from Jan. 2016 to Dec. The depth and surface dose between the radiation related workers and the radiation workers were the highest with $.7440{\pm}1.676mSv$ and $.7753{\pm}1.730mSv$, respectively, and statistically significant (p<.01). Among the three groups, the depth dose was the highest at $.143{\pm}.136mSv$ for clinical practice students and the highest at surface dose of $.1513{\pm}.139mSv$. The lowest in both cases, The mean difference between the two groups was statistically significant (p<.01). In conclusion, it is necessary to manage thoroughly according to the ALARA(As Low As Reasonably Achievable) principle. Especially, it is necessary to systematically manage the dose of radiation for clinical students who are in the blind spot of radiation safety management.

Performance Simulation of Motorcycle Engine Exhaust Heat Recovery System using Thermoelectric Element (열전소자를 이용한 모터사이클용 엔진 배기 폐열 회수 시스템 성능 해석)

  • Lee, Moo-Yeon;Kim, Kihyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.695-701
    • /
    • 2018
  • Research into exhaust heat recovery has been actively carried out to improve the thermal efficiency of internal combustion engines. In this study, the performance of thermoelectric generation from exhaust heat recovery for motorcycle engines was analyzed by 1-D thermo-fluid simulation. GT-SUITE, which was developed by Gamma Tech., was used for the simulation of the internal combustion engine and thermoelectric generation system. The basic performance of the engine was analyzed in the range of engine speed of 1000~7000 rpm and engine load of 0~100%. The ratio of exhaust heat energy to fuel chemical energy was found to be about 40~60%. A combined simulation of the engine model and thermoelectric generation model was carried out to analyze the voltage, current and power generated by the thermoelectric material. The generation characteristics of the thermoelectric material was dominantly affected by the exhaust gas temperature. The maximum generated power of the current thermoelectric generation system was found to be about 2.2% of the total exhaust heat energy. The design optimization of the thermoelectric generation system will be carried out to maximize its power generation and economic feasibility.

Flight Safety Assurance Technology for Rotary Aircraft through Optimization of HUMS Vibration Thresholds (회전익항공기 상태감시시스템 임계값 최적화를 통한 비행안전성 확보기술)

  • Jun, Byung-kyu;Jeong, Sang-gyu;Kim, Young-mok;Chang, In-ki
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.446-452
    • /
    • 2016
  • The aircraft has to be considered for safety very importantly because of peculiarity of flight in the air, so it should be retained through proper inspection and maintenance not only in production phase but also in operating phase. Recently, it is using the latest technology as engineering approach not depending on human factor to determine on maintenance needs, and domestic production rotary aircraft also has the health & usage monitoring system to measure and to monitor major components. However, continued vibration exceedance phenomenon occurred in production and operation phase because of inappropriate thresholds, and it confirmed as false alarm which is not necessary to repair. In this paper, it is described that operational concept of HUMS, and especially it contains a study result for efficiency of aircraft operation and ultimately the improvement of flight safety by optimizing HUMS thresholds to determine efficiently necessity of maintenance under limited conditions and by establishing inspection/maintenance procedures when the re-designated thresholds exceedance occurred.

Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer

  • Yang, Dang-Wei;Ma, Zhan-Guo;Qi, Fu-Zhou;Gong, Peng;Liu, Dao-Ping;Zhao, Guo-Zhen;Zhang, Ray Ruichong
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-215
    • /
    • 2017
  • This paper proposes gob-side entry retaining by roof break and filling in thick-layer soft rock conditions based on the thick-layer soft rock roof strata migration law and the demand for non-pillar gob-side entry retaining projects. The functional expressions of main roof subsidence are derived for three break roof direction conditions: lateral deflection toward the roadway, lateral deflection toward the gob and vertically to the roof. These are derived according to the load-bearing boundary conditions of the main roadway roof stratum. It is concluded that the break roof angle is an important factor influencing the stability of gob-side entry retaining surrounding rock. This paper studies the stress distribution characteristics and plastic damage scope of gob-side entry retaining integrated coal seams, as well as the roof strata migration law and the supporting stability of caving structure filled on the break roof layer at the break roof angles of $-5^{\circ}$, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ are studied. The simulation results of numerical analysis indicate that, the stress concentration and plastic damage scope to the sides of gob-side entry retaining integrated coal at the break roof angle of $5^{\circ}$ are reduced and shearing stress concentration of the caving filling body has been eliminated. The disturbance of coal mining to the roadway roof and loss of carrying capacity are mitigated. Field tests have been carried out on air-return roadway 5203 with the break roof angle of $5^{\circ}$. The monitoring indicates that the break roof filling section and compaction section are located at 0-45 m and 45-75 m behind the working face, respectively. The section from 75-100 m tends to be stable.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

Isolation and Identification of Antioxidant-producing Marine Bacteria and Medium Optimization. (항산화 물질을 생산하는 해양 미생물의 분리.동정 및 배양 특성 조사)

  • 김현진;여수환;조성춘;배동원;윤정훈;황용일;이승철
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.3
    • /
    • pp.223-229
    • /
    • 2002
  • For the research of the natural marine antioxidant, several bacteria were isolated from the coast of jin-Hae in Korea. Among the marine bacteria studied, strain HJ-14, a gram-negative, motile, strait rod, aerobic, and $Na^{+}$ required bacterium showed high activity of 1,1-diphenyl-2-picrylhydrazyl radical scav- enging. The morphological, physiological, and biochemical characteristics of the strain HJ-14 were similar to those of the Alteromonas macleodii ATCC $27126^{T}$ . Thus, it was tentatively identified as Alteromonas sp. HJ-14. The compositions of major fatty acids in cell membrane of Alteromonas sp. HJ-14 were $C_{ 14:0}$ , $ C_{15:0}$ , $C_{16:0}$ and $C_{17:1}$ $_{w8c}$ , which also suggest that it is affiliated with Alteromonas sp. The optimum culture conditions for production of antioxidant materials with Alteromonas sp. HJ-14 were at $25$~$37^{\circ}C$ and pH 6~8. The optimum conditions for the production of antioxidant for carbon, inorganic nitrogen, and sodium chloride sources were 2.5%(w/v) dextrin, 0.5%(w/v) ammonium sulfate, and 2~6%(w/v) sodium chloride, respectively. The hydroxyl radical scavenging ability of Alteromonas sp. HJ-14 broth was 90.03%, which is higher than ascor-bic acid(83.28%) and lower than butylated hydroxyanisole(95.46%) and $\alpha$-tocopherol(97.17%).

Evaluation of Macroporous and Microporous Carriers for CHO-K1 Cell Growth and Monoclonal Antibody Production

  • Rodrigues, Maria Elisa;Costa, Ana Rita;Fernandes, Pedro;Henriques, Mariana;Cunnah, Philip;Melton, David W.;Azeredo, Joana;Oliveira, Rosario
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1308-1321
    • /
    • 2013
  • The emergence of microcarrier technology has brought a renewed interest in anchorage-dependent cell culture for high-yield processes. Well-known in vaccine production, microcarrier culture also has potential for application in other fields. In this work, two types of microcarriers were evaluated for small-scale monoclonal antibody (mAb) production by CHO-K1 cells. Cultures (5 ml) of microporous Cytodex 3 and macroporous CultiSpher-S carriers were performed in vented conical tubes and subsequently scaled-up (20 ml) to shake-flasks, testing combinations of different culture conditions (cell concentration, microcarrier concentration, rocking methodology, rocking speed, and initial culture volume). Culture performance was evaluated by considering the mAb production and cell growth at the phases of initial adhesion and proliferation. The best culture performances were obtained with Cytodex 3, regarding cell proliferation (average $1.85{\pm}0.11{\times}10^6$ cells/ml against $0.60{\pm}0.08{\times}10^6$ cells/ml for CultiSpher-S), mAb production ($2.04{\pm}0.41{\mu}g/ml$ against $0.99{\pm}0.35{\mu}g/ml$ for CultiSpher-S), and culture longevity (30 days against 10-15 days for CultiSpher-S), probably due to the collagen-coated dextran matrix that potentiates adhesion and prevents detachment. The culture conditions of greater influence were rocking mechanism (Cytodex 3, pulse followed by continuous) and initial cell concentration (CultiSpher-S, $4{\times}10^5$ cells/ml). Microcarriers proved to be a viable and favorable alternative to standard adherent and suspended cultures for mAb production by CHO-K1 cells, with simple operation, easy scale-up, and significantly higher levels of mAb production. However, variations of microcarrier culture performance in different vessels reiterate the need for optimization at each step of the scale-up process.

Effect of Bentonite and Cement on Permeability and Compressive Strength of the Compacted Soil Liner (벤토나이트와 시멘트가 매립장 차수층의 투수성과 압축강도에 미치는 영향(I))

  • Kim, Soo-Moon;Youm, Hee-Nam;Lim, Nam-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.495-504
    • /
    • 2000
  • This study discussed the optimal use of bentonite and cement for the compacted soil liner of landfill. Techniques employed in this optimization included permeability(by KSF 2322) and compressive strength(by KSF 2314). The optimal amount of these materials to the compacted soil liner was determined in accordance with a regulatory guideline of the government: that is, $k=1{\times}10^{-7}cm/sec$. The testing sods were CL(Clayey Soil) and SM(Sandy Soil), which were classified according to LSCS(Unifed Soil Classify System), The results showed that the optimal amounts of bentonite and cement to mix with the compacted CL soil liner were 5% of bentonite and 5% of cement : namely, $k=9.98{\times}10^{-8}cm/sec$ and ${\sigma}_{28}=1275kg/cm^2$. For the compacted SM soil liner. the optimal amount of bentonite was 15%, in conjunction with 5% of cement : namely, $k=9.86{\times}10^{-8}cm/sec$ and ${\sigma}_{28}=18.72kg/cm^2$. It was concluded that the compacted CL or SM soil liner, with containing the optimal amounts of bentonite and cement showed the acceptable permeability and the compressive strength, referring to a regulatory guideline of the government for construction of the landfill.

  • PDF