• Title/Summary/Keyword: Optimality criteria

Search Result 104, Processing Time 0.034 seconds

Size Optimization Design Based on Maximum Stiffness for Structures (구조물의 최대강성 치수최적설계)

  • Shin, Soo-Mi;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • This study presents a structural design optimizing sizes of high-rise steel plane truss members by maximizing stiffness subjected to given volume constraints. The sizing optimum design is evaluated by using a well-known optimality criteria (OC) of gradient-based optimization methods. In typical size optimization methods, truss structures are optimized with respect to minimum weight with constraints on the value of some displacement and on the member stresses. The proposed method is an inversed size optimization process in comparisons with the typical size optimization methods since it maximizes stiffness associated with stresses or displacements subjected to volume constraints related to weight. The inversed approach is another alternative to classical size optimization methods in order to optimize members' sizes in truss structures. Numerical applications of a round shape steel pipe truss structure are studied to verify that the proposed maximum stiffness-based size optimization design is suitable for optimally developing truss members's sizes.

On the algorithm of constructing the model-based optimal sample (모형에 기초한 표본추출방법의 알고리듬)

  • 강명욱;김영일
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.2
    • /
    • pp.253-260
    • /
    • 1997
  • Various algorithms are investigated with respect to finding the best model-based samples according to criteria such as D-optimality and minimum mean square error. These two criteria are slightly different, but related to each other. Therefore, it is not surprising that these two are producing the almost identical samples. Some simple examples follow and critiques are provided along with directions for further research.

  • PDF

Development of LPAKO : Software of Simplex Method for Liner Programming (단체법 프로그램 LPAKO 개발에 관한 연구)

  • 박순달;김우제;박찬규;임성묵
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.49-62
    • /
    • 1998
  • The purpose of this paper is to develope a large-scale simplex method program LPAKO. Various up-to-date techniques are argued and implemented. In LPAKO, basis matrices are stored in a LU factorized form, and Reid's method is used to update LU maintaining high sparsity and numerical stability, and further Markowitz's ordering is used in factorizing a basis matrix into a sparse LU form. As the data structures of basis matrix, Gustavson's data structure and row-column linked list structure are considered. The various criteria for reinversion are also discussed. The dynamic steepest-edge simplex algorithm is used for selection of an entering variable, and a new variation of the MINOS' perturbation technique is suggested for the resolution of degeneracy. Many preprocessing and scaling techniques are implemented. In addition, a new, effective initial basis construction method are suggested, and the criteria for optimality and infeasibility are suggested respectively. Finally, LPAKO is compared with MINOS by test results.

  • PDF

A Study on the Economic Efficiency of Capital Market (자본시장(資本市場)의 경제적(經濟的) 효율성(效率性)에 관한 연구(硏究))

  • Nam, Soo-Hyun
    • The Korean Journal of Financial Management
    • /
    • v.2 no.1
    • /
    • pp.55-75
    • /
    • 1986
  • This article is to analyse the economic efficiency of capital market, which plays a role of resource allocation in terms of financial claims such as stock and bond. It provides various contributions to the welfare theoretical aspects of modern capital market theory. The key feature that distinguishes the theory described here from traditional welfare theory is the presence of uncertainty. Securities has time dimensions and the state and outcome of the future are really uncertain. This problem resulting from this uncertainty can be solved by complete market, but it has a weak power to explain real stock market. Capital Market is faced with the uncertainity because it is a kind of incomplete market. Individuals and firms in capital market made their consumption-investment decision by their own criteria, i. e. the maximization of expected utility form intertemporal consumption and the maximization of the market value of firm. We noted that allocative decisions that had to be made in the economy could be naturally subdivided into two groups. One set of decisions concerned the allocation of first-period resources among consumption $C_i$, investment in risky firms $I_j$, and riskless investment M. The other decisions concern the distribution among individuals of income available in the second period $Y_i(\theta)$. Corresponing to this grouping, the theoretical analysis of efficiency has also been dichotomized. The optimality of the distribution of output in the second period is distributive efficiency" and the optimality of the allocation of first-period resources is 'the efficiency of investment'. We have found in the distributive efficiency that the conditions for attainability is the same as the conditions for market optimality. The necessary and sufficient conditions for attainability or market optimality is that (1) all utility functions are such that -$\frac{{U_i}^'(Y_i)}{{U_i}^"(Y_i)}={\mu}_i+{\lambda}Y_i$-linear risk tolerance function where the coefficients ${\mu}_i$ and $\lambda$ are independent of $Y_i$, and (2) there are homogeneous expectations, i. e. ${\Large f}_i(\theta)={\Large f}(\theta)$ for every i. On the other hand, the efficiency of investment has disagreement about optimal investment level. The investment level for market rule will not generally lead to Pareto-optimal allocation of investment. This suboptimality is caused by (1)the difference of Diamond's decomposable production function and mean-variance valuation model and (2) the selection of exelusive investment or competitive investment. In conclusion, this article has made an analysis of conditions and processes of Pareto-optimal allocation of resources in capital marker and tried to connect with significant issues in modern finance.

  • PDF

Performance-based optimization of 2D reinforced concrete wall-frames using pushover analysis and ABC optimization algorithm

  • Saba Faghirnejad;Denise-Penelope N. Kontoni;Mohammad Reza Ghasemi
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.285-302
    • /
    • 2024
  • Conducting nonlinear pushover analysis typically demands intricate and resource-intensive computational efforts, involving a highly iterative process necessary for meeting both design-defined and requirements of codes in performance-based design. This study presents a computer-based technique for reinforced concrete (RC) buildings, incorporating optimization numerical approaches, optimality criteria and pushover analysis to automatically enhance seismic design performance. The optimal design of concrete beams, columns and shear walls in concrete frames is presented using the artificial bee colony optimization algorithm. The methodology is applied to three frames: a 4-story, an 8-story and a 12-story. These structures are designed to minimize overall weight while satisfying the levels of performance including Life Safety (LS), Collapse Prevention (CP), and Immediate Occupancy (IO). The process involves three main steps: first, optimization codes are implemented in MATLAB software, and the OpenSees software is used for nonlinear static analysis. By solving the optimization problem, several top designs are obtained for each frame and shear wall. Pushover analysis is conducted considering the constraints on relative displacement and plastic hinge rotation based on the nonlinear provisions of the FEMA356 nonlinear provisions to achieve each level of performance. Subsequently, convergence, pushover, and drift history curves are plotted for each frame, and leading to the selection of the best design. The results demonstrate that the algorithm effectively achieves optimal designs with reduced weight, meeting the desired performance criteria.

Development of an User Interface Design Method using Adaptive Genetic Algorithm (적응형 유전알고리즘을 이용한 사용자 인터페이스 설계 방법 개발)

  • Jung, Ki-Hyo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 2012
  • The size and layout of user interface components need to be optimally designed in terms of reachability, visibility, clearance, and compatibility in order for efficient and effective use of products. The present study develops an ergonomic design method which optimizes the size and layout of user interface components using adaptive genetic algorithm. The developed design method determines a near-optimal design which maximizes the aggregated score of 4 ergonomic design criteria (reachability, visibility, clearance, and compatibility). The adaptive genetic algorithm used in the present study finds a near-optimum by automatically adjusting the key parameter (probability of mutation) of traditional genetic algorithm according to the characteristic of current solutions. Since the adaptive mechanism partially helps to overcome the local optimality problem, the probability of finding the near-optimum has been substantially improved. To evaluate the effectiveness of the developed design method, the present study applied it to the user interface design for a portable wireless communication radio.

Parallel O.C. Algorithm for Optimal design of Plane Frame Structures (평면골조의 최적설계를 위한 병렬 O.C. 알고리즘)

  • 김철용;박효선;박성무
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.466-473
    • /
    • 2000
  • Optimality Criteria algorithm based on the derivation of reciprocal approximations has been applied to structural optimization of large-scale structures. However, required computational cost for the serial analysis algorithm of large-scale structures consisting of a large number of degrees of freedom and members is too high to be adopted in the solution process of O.C. algorithm Thus, parallel version of O.C. algorithm on the network of personal computers is presented in this Paper. Parallelism in O.C. algorithm may be classified into two regions such as analysis and optimizer part As the first step of development of parallel algorithm, parallel structural analysis algorithm is developed and used in O.C. algorithm The algorithm is applied to optimal design of a 54-story plane frame structure

  • PDF

Multi-material topology optimization of Reissner-Mindlin plates using MITC4

  • Banh, Thien Thanh;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • In this study, a mixed-interpolated tensorial component 4 nodes method (MITC4) is treated as a numerical analysis model for topology optimization using multiple materials assigned within Reissner-Mindlin plates. Multi-material optimal topology and shape are produced as alternative plate retrofit designs to provide reasonable material assignments based on stress distributions. Element density distribution contours of mixing multiple material densities are linked to Solid Isotropic Material with Penalization (SIMP) as a design model. Mathematical formulation of multi-material topology optimization problem solving minimum compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples illustrate the reliability and accuracy of the present design method for multi-material topology optimization with Reissner-Mindlin plates using MITC4 elements and steel materials.

An efficient solution algorithm of the optimal load distribution for multiple cooperating robots

  • Choi, Myoung-Hwan;Lee, Hum-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.501-506
    • /
    • 1993
  • An efficient solution algorithm of the optimal load distribution problem with joint torque constraints is presented. Multiple robot system where each robot is rigidly grasping a common object is considered. The optimality criteria used is the sum of weighted norm of the joint torque vectors. The maximum and minimum bounds of each joint torque in arbitrary form are considered as constraints, and the solution that reduces the internal force to zero is obtained. The optimal load distribution problem is formulated as a quadratic optimization problem in R, where I is the number of robots. The general solution can be obtained using any efficient numerial method for quadratic programming, and for dual robot case, the optimal solution is given in a simple analytical form.

  • PDF

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.