DOI QR코드

DOI QR Code

Performance-based optimization of 2D reinforced concrete wall-frames using pushover analysis and ABC optimization algorithm

  • Saba Faghirnejad (Department of Civil, Environmental and Architectural Engineering, The University of Kansas) ;
  • Denise-Penelope N. Kontoni (Department of Civil Engineering, School of Engineering, University of the Peloponnese) ;
  • Mohammad Reza Ghasemi (Department of Civil Engineering, University of Sistan and Baluchestan)
  • Received : 2024.02.25
  • Accepted : 2024.07.22
  • Published : 2024.10.25

Abstract

Conducting nonlinear pushover analysis typically demands intricate and resource-intensive computational efforts, involving a highly iterative process necessary for meeting both design-defined and requirements of codes in performance-based design. This study presents a computer-based technique for reinforced concrete (RC) buildings, incorporating optimization numerical approaches, optimality criteria and pushover analysis to automatically enhance seismic design performance. The optimal design of concrete beams, columns and shear walls in concrete frames is presented using the artificial bee colony optimization algorithm. The methodology is applied to three frames: a 4-story, an 8-story and a 12-story. These structures are designed to minimize overall weight while satisfying the levels of performance including Life Safety (LS), Collapse Prevention (CP), and Immediate Occupancy (IO). The process involves three main steps: first, optimization codes are implemented in MATLAB software, and the OpenSees software is used for nonlinear static analysis. By solving the optimization problem, several top designs are obtained for each frame and shear wall. Pushover analysis is conducted considering the constraints on relative displacement and plastic hinge rotation based on the nonlinear provisions of the FEMA356 nonlinear provisions to achieve each level of performance. Subsequently, convergence, pushover, and drift history curves are plotted for each frame, and leading to the selection of the best design. The results demonstrate that the algorithm effectively achieves optimal designs with reduced weight, meeting the desired performance criteria.

Keywords

References

  1. Abdelmgeed, F., Ghallah, G. and Hamoda, A. (2022), "Optimum cost design of reinforced concrete beams using artificial bee colony algorithm", Int. J. Adv. Struct. Geotech. Eng., 6(3), 110-129. https://doi.org/10.21608/asge.2022.274739.
  2. ACI (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  3. Alemu, Y.L., Habte, B., Lahmer, T. and Urgessa, G. (2023), "Priority criteria (PC) based particle swarm optimization of reinforced concrete frames (PCPSO)", Civil Eng., 4(2), 679-701. https://doi.org/10.3390/civileng4020039.
  4. Alshimmeri, A.J.H., Kontoni, D.P.N. and Ghamari, A. (2021), "Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper", Comput. Concrete, 28(3), 275-287. http://doi.org/10.12989/cac.2021.28.3.275.
  5. ASCE (2022), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, VA, USA.
  6. ATC (1996), Seismic Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, Redwood City, CA, USA.
  7. Balling, R.J. and Yao, X. (1997), "Optimization of reinforced concrete frames", J. Struct. Eng., 123(2), 193-202. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(193).
  8. Banerjee, R., Srivastava, J.B. and Gupta, N. (2023), "Computational optimization of shear wall location in a C-shaped reinforced concrete framed building for enhanced seismic performance", Int. J. Interact. Des. Manuf., 2023, 1-10. http://doi.org/10.1007/s12008-023-01302-y.
  9. Cheng, F.Y. and Pantelides, C.P. (1988), "Optimal placement of actuators for structural control", Technical Report NCEER 88-0037; National Center for Earthquake Engineering Research, State University of New York at Buffalo, Buffalo, NY, USA.
  10. Das, T.K. and Choudhury, S. (2023), "Developments in the unified performance-based seismic design", J. Build. Pathol. Rehabil., 8(1), 13. https://doi.org/10.1007/s41024-022-00258-y.
  11. Eidgahee, D.R., Soleymani, A., Hasani, H., Kontoni, D.P.N. and Jahangir, H. (2023), "Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques", Comput. Concrete, 32(1), 1-13. https://doi.org/10.12989/cac.2023.32.1.001.
  12. Fadaee, M.J. and Grierson, D.E. (1998), "Design optimization of 3D reinforced concrete structures having shear walls", Eng. Comput., 14, 139-145. https://doi.org/10.1007/BF01213587.
  13. Farghaly, A.A. and Kontoni, D.P.N. (2022), "Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI", Earthq. Struct., 22(6), 625-635. http://doi.org/10.12989/eas.2022.22.6.625.
  14. Farghaly, A.A. and Kontoni, D.P.N. (2023), "Mitigation of seismic pounding between two L-shape in plan high-rise buildings considering SSI effect", Coupled Syst. Mech., 12(3), 277-295. https://doi.org/10.12989/csm.2023.12.3.277.
  15. FEMA (2000), FEMA356 Prestandard and Commentary for the Seismic Rehabilitation of Buildings, American Society of Civil Engineers (ASCE) for the Federal Emergency Management Agency (FEMA), Washington, D.C., USA.
  16. Fragiadakis, M. and Lagaros, N.D. (2011), "An overview to structural seismic design optimisation frameworks", Comput. Struct., 89(11-12), 1155-1165. https://doi.org/10.1016/j.compstruc.2010.10.021.
  17. Ganzerli, S., Pantelides, C.P. and Reaveley, L.D. (2000), "Performance-based design using structural optimization", Earthq. Eng. Struct. Dyn., 29(11), 1677-1690. https://doi.org/10.1002/1096-9845(200011)29:11.
  18. Ghadami, A., Ghamari, A. and Jaya, R.P. (2024), "Improving the behavior of the CBF system using an innovative box section damper: Experimental and numerical study", Struct., 62, 106210. https://doi.org/10.1016/j.istruc.2024.106210.
  19. Gholizadeh, S. and Aligholizadeh, V. (2019), "Reliability-based optimum seismic design of RC frames by a metamodel and metaheuristics", Struct. Des. Tall Spec. Build., 28(1), e1552. https://doi.org/10.1002/tal.1552.
  20. Grierson, D.E. and Moharrami, H. (1993), "Design optimization of reinforced concrete building frameworks", Optimization of Large Structural Systems, Springer, Dordrecht, Netherlands.
  21. Hajirasouliha, I., Asadi, P. and Pilakoutas, K. (2012), "An efficient performance-based seismic design method for reinforced concrete frames", Earthq. Eng. Struct. Dyn., 41(4), 663-679. https://doi.org/10.1002/eqe.1150.
  22. Idels, O. and Lavan, O. (2020), "Performance based formal optimized seismic design of steel moment resisting frames", Comput. Struct., 235, 106269. https://doi.org/10.1016/j.compstruc.2020.106269.
  23. Jafari, A., Ghasemi, M.R., Akbarzadeh Bengar, H. and Hassani, B. (2018), "Seismic performance and damage incurred by monolithic concrete self-centering rocking walls under the effect of axial stress ratio", Bull. Earthq. Eng., 16, 831-858. https://doi.org/10.1007/s10518-017-0227-2.
  24. Jahjouh, M., Arafa, M. and Alqedra, M. (2013), "Artificial bee colony (ABC) algorithm in the design optimization of RC continuous beams", Struct. Multidiscip. Optim., 47, 963-979. http://doi.org/10.1007/s00158-013-0884-y.
  25. Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization." Technical Report-TR06; Erciyes University, Engineering Faculty, Computer Engineering Department, Kayseri, Turkey.
  26. Kashani, A.R., Gandomi, A.H., Azizi, K. and Camp, C.V. (2022), "Multi-objective optimization of reinforced concrete cantilever retaining wall: A comparative study", Struct. Multidiscip. Optim., 65(9), 262. https://doi.org/10.1007/s00158-022-03318-6.
  27. Kaveh, A. and Rezazadeh Ardebili, S. (2023), "Optimum design of 3D reinforced concrete frames using IPGO algorithm", Struct., 48, 1848-1855. https://doi.org/10.1016/j.istruc.2023.01.071.
  28. Kaveh, A. and Zakian, P. (2014), "Optimal seismic design of reinforced concrete shear wall-frame structures", KSCE J. Civil Eng., 18, 2181-2190. https://doi.org/10.1007/s12205-014-0640-x.
  29. Khoshnoudian, F. and Kashani, M.M.B. (2012), "Assessment of modified consecutive modal pushover analysis for estimating the seismic demands of tall buildings with dual system considering steel concentrically braced frames", J. Constr. Steel Res., 72, 155-167. https://doi.org/10.1016/j.jcsr.2011.12.002.
  30. Kontoni, D.P.N. and Farghaly, A.A. (2019), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17(4), 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
  31. Kontoni, D.P.N. and Ghamari, A. (2024), "Computational investigation of the fundamental period of reinforced concrete frame buildings with masonry infilled walls", Proceedings of the International Conference on Advances in Civil Engineering (ICACE 2022), Mahagaon, Maharashtra, India, December.
  32. Kontoni, D.P.N., Jahangiri, B., Dalvand, A. and Shokri-Rad, M. (2023), "Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels", Adv. Concrete Constr., 15(1), 23-39. https://doi.org/10.12989/acc.2023.15.1.023.
  33. Kumar, A., Arora, H.C., Kapoor, N.R., Kontoni, D.P.N., Kumar, K., Jahangir, H. and Bhushan, B. (2023), "Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system", Comput. Concrete, 32(2), 119-138. http://doi.org/10.12989/cac.2023.32.2.119.
  34. Liu, Y., Kuang, J. and Huang, Q. (2018a), "Extended spectrum-based pushover analysis for predicting earthquake-induced forces in tall buildings", Eng. Struct., 167, 351-362. https://doi.org/10.1016/j.engstruct.2018.04.045.
  35. Liu, Y., Kuang, J.S. and Huang, Q. (2018b), "Modified spectrum-based pushover analysis for estimating seismic demand of dual wall-frame systems", Eng. Struct., 165, 302-314. https://doi.org/10.1016/j.engstruct.2018.03.043.
  36. Mamazizi, A., Khani, S., Gharehbaghi, V.R., and Noroozinejad Farsangi, E. (2022), "Modified plate frame interaction method for evaluation of steel plate shear walls with beam-connected web plates", J. Build. Eng., 45, 103682. https://doi.org/10.1016/j.jobe.2021.103682.
  37. MathWorks (2021), MATLAB and Statistics Toolbox R2021b, MathWorks, Natick, MA, USA.
  38. McKenna, F., Fenves, G.L., Scott, M.H. and Jeremic, B. (2000), "OpenSees: Open system for earthquake engineering simulation", Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
  39. Mirrashid, M., Naderpour, H., Kontoni, D.P.N., Jakubczyk-Galczynska, A., Jankowski, R. and Nguyen, T.N. (2023), "Optimized computational intelligence model for estimating the flexural behavior of composite shear walls", Build., 13(9), 2358. https://doi.org/10.3390/buildings13092358.
  40. Moayyeri, N., Gharehbaghi, S. and Plevris, V. (2019), "Cost-based optimum design of reinforced concrete retaining walls considering different methods of bearing capacity computation", Math., 7(12), 1232. https://doi.org/10.3390/math7121232.
  41. Mostofinejad, D. (2021), "Reinforced concrete structures", Arkan Danesh, Esfahan, Esfahan, Iran.
  42. OpenSees (2023), Open System for Earthquake Engineering Simulation. https://opensees.berkeley.edu/
  43. Poursha, M., Khoshnoudian, F. and Moghadam, A. (2011), "A consecutive modal pushover procedure for nonlinear static analysis of one-way unsymmetric-plan tall building structures", Eng. Struct., 33(9), 2417-2434. https://doi.org/10.1016/j.engstruct.2011.04.013.
  44. Rajeev, S. and Krishnamoorthy, C.S. (1997), "Genetic algorithms-based methodologies for design optimization of trusses", J. Struct. Eng., 123(3), 350-358. https://doi.org/10.1061/(ASCE)07339445(1997)123:3(350).
  45. Razavi, N. and Gholizadeh, S. (2021), "Seismic collapse safety analysis of performance-based optimally designed reinforced concrete frames considering life-cycle cost", J. Build. Eng., 44, 103430. https://doi.org/10.1016/j.jobe.2021.103430.
  46. Razmara Shooli, A., Vosoughi, A.R. and Banan, M.R. (2019), "A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames", Appl. Soft Comput., 85, 105843. https://doi.org/10.1016/j.asoc.2019.105843.
  47. Saka, M. (1992), "Optimum design of multistorey structures with shear walls", Comput. Struct., 44(4), 925-936. https://doi.org/10.1016/0045-7949(92)90480-N.
  48. Sang-To, T., Le-Minh, H., Mirjalili, S., Wahab, M.A. and Cuong-Le, T. (2022), "A new movement strategy of grey wolf optimizer for optimization problems and structural damage identification", Adv. Eng. Softw., 173, 103276. https://doi.org/10.1016/j.advengsoft.2022.103276.
  49. Sberna, A.P., Di Trapani, F. and Marano, G.C. (2023), "A new genetic algorithm framework based on Expected Annual Loss for optimizing seismic retrofitting in reinforced concrete frame structures", Procedia Struct. Integr., 44, 1712-1719. https://doi.org/10.1016/j.prostr.2023.01.219.
  50. SEAOC (2019), Vision 2000, Performance-Based Seismic Engineering of Buildings, Structural Engineers Association of California, Sacramento, CA, USA.
  51. Turan, S., Aydogdu, I. and Emsen, E. (2023), "Optimum design of elastic continuous foundations with the artificial bee colony method", Int. J. Eng. Appl. Sci., 15(1), 36-51. http://doi.org/10.24107/ijeas.1223160.
  52. Wight, J.K. and Macgregor, J.G. (2012), "Reinforced concrete: Mechanics and design", Pearson Education, Hoboken, NJ, USA.
  53. Yadhav, A., Gosavi, S. and Kulkarni, M. (2023), "Nonlinear behaviour of a reinforced concrete building subjected to blast load and optimisation using a meta-heuristic algorithm", Asian J. Civil Eng., 25(1), 397-412. http://doi.org/10.1007/s42107-023-00783-2.
  54. Zakian, P. and Kaveh, A. (2020), "Topology optimization of shear wall structures under seismic loading", Earthq. Eng. Eng. Vib., 19, 105-116. https://doi.org/10.1007/s11803-020-0550-5.
  55. Zakian, P. and Kaveh, A. (2023), "Seismic design optimization of engineering structures: A comprehensive review", Acta Mech., 234(4), 1305-1330. https://doi.org/10.1007/s00707-022-03470-6.
  56. Zakian, P. and Kaveh, A. (2024), "Multi-objective seismic design optimization of structures: A review", Arch. Comput. Method. Eng., 31(2), 579-594. https://doi.org/10.1007/s11831-023-09992-z.
  57. Zou, X., Chan, C.M., Li, G. and Wang, Q. (2007), "Multiobjective optimization for performance-based design of reinforced concrete frames", J. Struct. Eng., 133(10), 1462-1474. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1462).