• 제목/요약/키워드: Optimal-trajectory control

검색결과 206건 처리시간 0.03초

An Earth-Moon Transfer Trajectory Design and Analysis Considering Spacecraft's Visibility from Daejeon Ground Station at TLI and LOI Maneuvers

  • Woo, Jin;Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.195-204
    • /
    • 2010
  • The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.

다중 경로점 제한 조건하의 헬리콥터의 최적 경로 생성 (Generation of an Optimal Trajectory for Rotorcraft Subject to Multiple Waypoint Constraints)

  • 최기영
    • 한국항공우주학회지
    • /
    • 제31권8호
    • /
    • pp.50-57
    • /
    • 2003
  • 헬리콥터를 공간상에서 비교적 가까운 거리에 불규칙하게 주어진 여러 경로점을 따라 비행하는 것은 아주 실제적인 임무인데 이러한 임무에서 최적의 경로를 찾는 것은 어려운 문제에 속한다. 역제어나 직접법을 사용하는 전통적 접근은, 역제어의 경우에는 전 구간의 경로를 시간의 함수로 미리 설정해야 한다거나, 직접법의 경우 계산시간이 너무 많이 소요 된다는 등의 제약으로 그 활용성이 제한적이었다. 본 논문에서는 최적제어기법을 적용하여 다중경로점이 주어진 문제에 대해 최적경로를 구하는 알고리듬을 개발하고 이를 이용하여 slalom 운동과 전체적으로 곡선이 경로에서 일부구간만 선형으로 주어지는 문제 등에 있어서의 헬리콥터의 최적경로를 구하고 그 효용성을 검증하였다.

Optimal Trajectory Control for RobortManipulators using Evolution Strategy and Fuzzy Logic

  • Park, Jin-Hyun;Kim, Hyun-Sik;Park, Young-Kiu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.16-20
    • /
    • 1999
  • Like the usual systems, the industrial robot manipulator has some constraints for motion. Usually we hope that the manipulators move fast to accomplish the given task. The problem can be formulated as the time-optimal control problem under the constraints such as the limits of velocity, acceleration and jerk. But it is very difficult to obtain the exact solution of the time-optimal control problem. This paper solves this problem in two steps. In the first step, we find the minimum time trajectories by optimizing cubic polynomial joint trajectories under the physical constraints using the modified evolution strategy. In the second step, the controller is optimized for robot manipulator to track precisely the optimized trajectory found in the previous step. Experimental results for SCARA type manipulator show that the proposed method is very useful.

  • PDF

Optimal Walking Trajectory for a Quadruped Robot Using Genetic-Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2492-2497
    • /
    • 2003
  • This paper presents optimal walking trajectory generation for a quadruped robot with genetic-fuzzy algorithm. In order to move a quadruped robot smoothly, both generations of optimal leg trajectory and free walking are required. Generally, making free walking is difficult to realize for a quadruped robot, because the patterned trajectory may interfere in the free walking. In this paper, we suggest the generation method for the leg trajectory satisfied with free walking pattern so as to avoid obstacle and walk smoothly. We generate via points of leg with respect to body motion, and then we use the genetic-fuzzy algorithm to search for the optimal via velocity and acceleration information of legs. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

유전 알고리즘을 이용한 선박의 최적 항로 결정에 관한 연구 (A Study on the Optimal Trajectory Planning for a Ship Using Genetic algorithm)

  • 이병결;김종화;김대영;김태훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.255-255
    • /
    • 2000
  • Technical advance of electrical chart and cruising equipment make it possible to sail without a man. It is important to decide the cruising route in view of effectiveness and stability of a ship. So we need to study on the optimal trajectory planning. Genetic algorithm is a strong optimization algorithm with adaptational random search. It is a good choice to apply genetic algorithm to the trajectory planning of a ship. We modify a genetic algorithm to solve this problem. The effectiveness of the revised genetic algorithm is assured through computer simulations.

  • PDF

Optimal trajectory tracking control of a robot manipulator

  • Lee, Gwan-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.980-984
    • /
    • 1990
  • In order to find the optimal control law for the precise trajectory tracking of a robot manipulator, a perturbational control method is proposed based on a linearized manipulator dynamic model which can be obtained in a very compact and computationally efficient manner using the dual number algebra. Manipulator control can be decomposed into two parts: the nominal control and the corrective perturbational control. The nominal control is precomputed from the inverse dynamic model using the quantities of a desired trajectory. The perturbational control is obtained by applying the second-variational method on the linearized dynamic model. Simulation results for a PUMA-560 robot show that, by using this controller, the desired trajectory tracking performance of the robot can be achieved, even in the presence of large initial positional disturbances.

  • PDF

Time-Delay Control for the Implementation of the Optimal Walking Trajectory of Humanoid Robot

  • Ahn, Doo Sung
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2018
  • Humanoid robots have fascinated many researchers since they appeared decades ago. For the requirement of both accurate tracking control and the safety of physical human-robot interaction, torque control is basically desirable for humanoid robots. Humanoid robots are highly nonlinear, coupled, complex systems, accordingly the calculation of robot model is difficult and even impossible if precise model of the humanoid robots are unknown. Therefore, it is difficult to control using traditional model-based techniques. To realize model-free torque control, time-delay control (TDC) for humanoid robot was proposed with time-delay estimation technique. Using optimal walking trajectory obtained by particle swarm optimization, TDC with proposed scheme is implemented on whole body of a humanoid, not on biped legs even though it is performed by a virtual humanoid robot. The simulation results show the validity of the proposed TDC for humanoid robots.

Fuzzy sliding-mode control of a human arm in the sagittal plane with optimal trajectory

  • Ardakani, Fateme Fotouhi;Vatankhah, Ramin;Sharifi, Mojtaba
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.653-663
    • /
    • 2018
  • Patients with spinal cord injuries cannot move their limbs using their intact muscles. A suitable controller can be used to move their arms by employing the functional electrical stimulation method. In this article, a fuzzy exponential sliding-mode controller is designed to move a musculoskeletal human arm model to track an optimal trajectory in the sagittal plane. This optimal arm trajectory is obtained by developing a policy for the central nervous system. In order to specify the optimal trajectory between two points, two dynamic and static optimal criteria are applied simultaneously. The first dynamic objective function is defined to minimize the joint torques, and the second static optimization is offered to minimize the muscle forces at each moment. In addition, fuzzy logic is used to tune the sliding-surface parameter to enable an appropriate tracking performance. Simulation results are evaluated and compared with experimental data for upward and downward movements of the human arm.

이동물체 포획을 위한 최적 경로 계획 (Optimal Trajectory Planning for Capturing a Mobile Object)

  • 황철호;이상헌;조방현;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.

Optimal Trajectory Control for Robort Manipulators using Evolution Strategy and Fuzzy Logic

  • 박진현;김현식;최영규
    • 제어로봇시스템학회지
    • /
    • 제1권1호
    • /
    • pp.16-16
    • /
    • 1995
  • Like the usual systems, the industrial robot manipulator has some constraints for motion. Usually we hope that the manipulators move fast to accomplish the given task. The problem can be formulated as the time-optimal control problem under the constraints such as the limits of velocity, acceleration and jerk. But it is very difficult to obtain the exact solution of the time-optimal control problem. This paper solves this problem in two steps. In the first step, we find the minimum time trajectories by optimizing cubic polynomial joint trajectories under the physical constraints using the modified evolution strategy. In the second step, the controller is optimized for robot manipulator to track precisely the optimized trajectory found in the previous step. Experimental results for SCARA type manipulator show that the proposed method is very useful.