• Title/Summary/Keyword: Optimal weights,

Search Result 399, Processing Time 0.027 seconds

COST BENEFIT ANALYSIS OF HIGHWAY SYSTEMS

  • Darren Thompson;Don Chen;Nick Walker;Neil Mastin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.494-496
    • /
    • 2013
  • Cost-Benefit Analysis (CBA) is a systematic optimization process that allows users to compare different alternatives and to determine if a project is a solid investment. Many state DOTs have included CBA in their pavement management systems (PMSs) to help allocate state funds for maintenance, rehabilitation, resurfacing, and reconstruction of pavements. In a typical CBA, each pavement type has an assigned weight factor which represents the level of importance of this pavement type. To conduct an accurate CBA, it is essential to select appropriate weight factors. Arbitrarily assigning weights factors to pavements can lead to biased and inaccurate funding allocation decisions. The purpose for this paper is to outline a method to develop an ideal set of weight factors that can be utilized to conduct more accurate CBA. To this end, a matrix of all possible weight factors sets was developed. CBA was conducted for each set of weight factors to obtain a population of possible optimization solutions. Then a regression analysis was performed to establish the relationship between benefit and weight factors. Finally, a multi-objective genetic algorithm was applied to select the optimal set of weight factors. The findings from this study can be used by state DOTs to strategically manage their roadway systems in a cost effective manner.

  • PDF

Trypsins from the Dark Fleshed Fish(Anchovy, Mackerel, Yellowfin Tuna and Albacore) 1. Purification and Optimal Reaction Conditions (혈합육어(멸치, 고등어, 황다랭이 및 날개다랭이)의 Trypsin 1. 정제와 반응조건)

  • 변재형;조득문;허민수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.4
    • /
    • pp.448-457
    • /
    • 1993
  • Deterioration of fish muscle is known to occur more quickly in the dark fleshed fish than in the white fleshed fish, causing by their high intestinal proteolytic activity. Muscle degradation which suffer post-mortem autoproteolysis is affected by trypsin with its unique activation function towards other enzymes. To compare physicochemical and enzymatic properties for the trypsins of the dark fleshed fish, trypsins from the viscera of anchovy (Engraulis japonica), and the pyloric caeca of mackerel (Scomber japonicus), yellowfin tuna (Thunnus albacores) and albacore (Thunnus alalunga) were purified through ammonium sulfate fractionation, benzamidine-Sepharose 6B, DEAE-Sephadex A-50, and Sephadex G-75 chromatography Two trypsins from mackerel (designated mackerel trypsin A and mackerel trypsin B), and one each from anchovy, yellowfin tuna and albacore were isolated as electrophoretical homogeneity, The purities of anchovy trypsin, mackerel trypsin A and B, yellowfin tuna trypsin, and albacore trypsin increased to 78.1, 4.8, 9.3, 120, and 160-fold, respectively, compared to crude enzyme solutions. Molecular weights of the trypsins from the dark fleshed fish estimated by SDS-polyacrylamide electrophoresis were ranged from 22kDa to 26kDa. The trypsins contained higher amount of glycine, serine and aspartic acid, and less amount of tryptophan, methionine, lysine and tyrosine. Optimal conditions for amidotici reactions of the enzymes were pH 8.0 and 45$^{\circ}C$ for anchovy trypsin, pH 8.0 and 5$0^{\circ}C$ for mackerel trypsin A and B, pH 9.0 and 55$^{\circ}C$ for yellowfin tuna trypsin, and pH 9.0 and 5$0^{\circ}C$ for albacore trypsin. It was supposed that the habitat temperature of the dark fleshed fish is slightly connected with the optimal reaction temperature of the trypsins of the fish.

  • PDF

Effects of different soil moisture conditions on growth, yield and stress index of adzuki bean from paddy field cultivation

  • Chun, Hyen Chung;Jung, Ki Yuol;Choi, Young Dae;Lee, Sang Hun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.337-337
    • /
    • 2017
  • Accurate and optimal water supply to cereal crop is critical in growing stalks and producing maximum yields. Excessive soil moisture may cause nutrient deficiencies and oxygen deficiency. Excessive soil water during crop growth stages results in decrease of yields. In Korea, the largest agricultural lands are paddy fields. Recently, upland crops are cultivated in paddy field soils to reduce overproduced rice in Korea. In order to success this policy, it is necessary to fully understand crop response to excessive soil moisture condition from paddy field soils. Adzuki bean is one of major legumes which provide protein in daily diet. Adzuki bean has been well know its weakness to excessive soil moisture condition, In order to obtain optimal yields of adzuki bean from paddy field cultivation, it is necessary to understand response of adzuki bean under different soil moisture conditions. This study investigated characteristics of growths, yields and response degree of water stress from adzuki bean. Three cultivars were selected for this study; Chungju, Hongeon, and Arari. All adzuki beans were cultivated in a paddy field which was divided into three sections with different soil moistures. The paddy field was located in Milyang, Gyeongsangnam during 2016. One section of the paddy field had the greatest average soil moisture content as 35.1% during adzuki bean cultivation (very poor). The second greatest soil moisture section had 32.6% (somewhat poor) and the smallest soil moisture section had 28.9% of soil moisture (somewhat well). During cultivation of three cultivar adzuki beans, soil moisture contents and groundwater levels were monitored. All the characteristics of growth and yield components were measured; height, thickness, 100 seed weights etc. Stress index values were calculated by Stress Day Index (SDI). All cultivars had the greatest yields from somewhat well section. Chungju had the greatest yields throughout all three sections compared to other cultivars. Chungju had 81% greater yield than Hongeon which had the smallest yield from somewhat well section. Arari set in middle from all sections. However there was no significant differences yields from very poor and somewhat poor sections. Leaf SPAD values tended to decrease and stable carbon isotope values increased as soil moisture increased. However, Chungju had no difference across different soil moistures in SPAD and stable carbon isotope values, while Hongeon had the greatest differences across sections. These trends followed by SDI values. Chungju had the smallest SDI values compared to other cultivars, which meant that Chungju was the strongest tolerance against excessive soil moisture than other cultivars. All three cultivars showed severe decrease of yields from very poor and somewhat poor sections. Arari and Hongeon showed great decrease from somewhat well section compared to yields from upland soil. These two cultivars may not be proper cultivating in paddy fields. In conclusion, adzuki bean is very sensitive to soil moisture condition and detailed soil managements are required to obtain optimal yields of adzuki bean from paddy field cultivation.

  • PDF

A Robust Algorithm for Tracking Feature Points with Incomplete Trajectories (불완전한 궤적을 고려한 강건한 특징점 추적 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.25-37
    • /
    • 2000
  • The trajectories of feature points can be defined by the correspondences between points in consecutive frames. The correspondence problem is known to be difficult to solve because false positives and false negatives almost always exist in real image sequences. In this paper, we propose a robust feature tracking algorithm considering incomplete trajectories such as entering and/or vanishing trajectories. The trajectories of feature points are determined by calculating the matching measure, which is defined as the minimum weighted Euclidean distance between two feature points. The weights are automatically updated in order to properly reflect the motion characteristics. We solve the correspondence problem as an optimal graph search problem, considering that the existence of false feature points may have serious effect on the correspondence search. The proposed algorithm finds a local optimal correspondence so that the effect of false feature point can be minimized in the decision process. The time complexity of the proposed graph search algorithm is given by O(mn) in the best case and O($m^2n$) in the worst case, where m and n arc the number of feature points in two consecutive frames. By considering false feature points and by properly reflecting motion characteristics, the proposed algorithm can find trajectories correctly and robustly, which has been shown by experimental results.

  • PDF

Optimal Larval Density and Low Temperature Storage Conditions for Rearing of Protaetia brevitarsis (Coleoptera: Cetoniidae) using a Fermented Mulberry Sawdust-base Diet (뽕나무발효톱밥을 이용한 흰점박이꽃무지(딱정벌레목: 꽃무지과) 유충 사육에서 적정 사육밀도 및 저온처리 조건)

  • Ju-Rak, Lim;Hyung-Cheol, Moon;Na-Young, Park;Sang-Sik, Lee;Woong, Kim;Chang-Hak, Choi;Hee-Jun, Kim
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • We raised the white-spotted flower chafer, Protaetia brevitarsis seulensis, from the larvae stage using a fermented mulberry sawdust-base diet at 25℃ and 16:8 h light:dark photoperiod. First, we determined the optimal density of the neonate larvae to be introduced into a rearing box (543 × 363 × 188 mm). The survival rates of the larvae were higher than 80% at 90 days after rearing at 100-175 larval densities but reduced by more than 10% at 200 larval density. The larval weights at 100 to 150 larval densities were similar; however, the weights at 175 and 200 larval densities were lower than those at 100 larval densities, indicating that the rate of weight gain increased under lower density. Based on these results, we inferred that 100-150 larvae was the optimal density. Second, we investigated the storage conditions of the last instar larvae under low temperatures. Four weight groups (1.8-2.0, 2.0-2.3, 2.3-2.5, and 2.5 g) of larvae were stored at 4, 8, and 10℃, respectively. All the larvae at 4℃ died 70 days after storage, whereas 80% of the larvae survived at 8℃ 70 days after storage, indicating that high larval weight was associated with high survival rates. The adults that emerged from larvae with more than 2.3 g and stored for up to 50 days at 4℃ laid few eggs. However, the adults that emerged from all larval weight groups stored for 70 days at 8℃ and 10℃ laid several eggs successfully. Based on these results, we inferred that the last instar larvae with more than 2.3 g could be stored for 30-50 days at 8℃.

Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine- (백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌-)

  • 김명길;안원영
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF

Effect of NaCl Stress on the Growth, Antioxidant Materials, and Inorganic Ion Content in Head Lettuce Seedlings (양상추 유묘의 생육, 항산화물질 및 무기이온의 함량에 미치는 NaCl 스트레스의 영향)

  • Kim, Ju-Sung;Hyun, Tae-Kyung
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.433-440
    • /
    • 2011
  • In head lettuce seedlings, NaCl stress was treated with hydroponic culture containing 0, 50, or with 100 mM NaCl in the seedling grown up to two leaf stages. Our focus was on the effect of NaCl on fresh and dry weights, antioxidant materials, and inorganic ion level. Fresh and dry weights of head lettuce seedlings increased with the increase in salinity while the optimal growth occured at 50 mM NaCl. The chlorophyll a (Chl a), total Chl and Chl a/b ratio increased 6 days after treatment with 100 mM NaCI. However, the Chl b content decreased. Total glutathione increased only in the root of head lettuce seedlings, whereas significant increase of total arcorbate content was observed in both shoot and root after the treatment with 100 mM NaCl. In addition, the NaCl treatment resulted in the decreased level of spermidine content, and a increased spermine content. Furthermore, $Na^+$ content in shoot and root increased significantly while $K^+$, $Ca^{2+}$, and $Mg^{2+}$ content decreased. The alteration of inorganic ion level after treatment with NaCl caused the reduction of $K^+/Na^+$, $Ca^{2+}/Na^+$, and $Mg^{2+}/Na^+$ ratio with the increase of NaCl concentration. Taken together, these findings indicate that the treatment of NaCl causes the induction of oxidative stress, and results in the alteration of metabolic mechanism in head lettuce seedlings.

A Study on the Forecasting of Daily Streamflow using the Multilayer Neural Networks Model (다층신경망모형에 의한 일 유출량의 예측에 관한 연구)

  • Kim, Seong-Won
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.537-550
    • /
    • 2000
  • In this study, Neural Networks models were used to forecast daily streamflow at Jindong station of the Nakdong River basin. Neural Networks models consist of CASE 1(5-5-1) and CASE 2(5-5-5-1). The criteria which separates two models is the number of hidden layers. Each model has Fletcher-Reeves Conjugate Gradient BackPropagation(FR-CGBP) and Scaled Conjugate Gradient BackPropagation(SCGBP) algorithms, which are better than original BackPropagation(BP) in convergence of global error and training tolerance. The data which are available for model training and validation were composed of wet, average, dry, wet+average, wet+dry, average+dry and wet+average+dry year respectively. During model training, the optimal connection weights and biases were determined using each data set and the daily streamflow was calculated at the same time. Except for wet+dry year, the results of training were good conditions by statistical analysis of forecast errors. And, model validation was carried out using the connection weights and biases which were calculated from model training. The results of validation were satisfactory like those of training. Daily streamflow forecasting using Neural Networks models were compared with those forecasted by Multiple Regression Analysis Mode(MRAM). Neural Networks models were displayed slightly better results than MRAM in this study. Thus, Neural Networks models have much advantage to provide a more sysmatic approach, reduce model parameters, and shorten the time spent in the model development.

  • PDF

The Effect of DMPA Contents on the Water Dispersability and Mechanical Properties of Urea Resin (DMPA의 함량이 우레아 수지의 수분산 안정성과 기계적 성질에 미치는 영향)

  • Park, Jae Cheol;Kim, Dong Soo;Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1128-1135
    • /
    • 2019
  • In this study, different types of polyether amines and H12MDI were used to synthesize water dispersed urea resins, which can be applied to coating material on the concrete slabs for bicycle road using the ordinary application equipments. The concentrations of several polyether amines with different molecular weights and the number of amine functionality were varied to set up the optimal condition for water dispersed urea resin preparation with both an excellent tensile strength and an elongation. In addition, the effect of DMPA[2,2-Bis(hydroxymethyl)propanoic acid] concentration on the storage stability of the water dispersed urea resin was also investigated. The formation of urea bonds from isocyanate and polyether amines was confirmed through FT-IR ATR spectroscopy. From the mechanical properties of urea resins, PU-4 and PU-6, which were prepared with both diamines and triamine of different molecular weights and number of functionality, showed the tensile strength of 10.5 N/㎟ and 12.7 N/㎟, respectively and the elongation of 1165 % and 969%, respectively. Among the water dispersed urea resin synthesized with different contents of DMPA, PU-6 showed the highest mechanical properties, a tensile strength of 14.2 N/㎟ and an elongation of 993%. In addition, the water dispersion state of this PU-6 was the most stable even after 8 weeks.

Dynamic Characteristics of Truss-Type Lift Gate According to Installation Direction (트러스형 리프트 게이트의 설치방향에 따른 진동 특성)

  • Lee, Seong-Haeng;Kong, Bo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.120-127
    • /
    • 2016
  • This study examined the dynamic characteristics of the gate to identify the optimal gate installation direction according to the installation direction. A 1:31 scale model was constructed for a 47.5m prototype gate using acrylic. The scaled weights were tuned by adding lead weights. The first step was to measure the natural frequencies of the model gates, and compare them with finite-element analysis of the prototypes as a calibration. The scaled model was tested in a 1.6 m wide concrete flume for two orientations to determine the effects of the gate orientation on structural vibrations. Vertical vibrations were measured under a range of operational conditions, including a range of bottom opening heights and different upstream and downstream water levels. For large bottom opening heights in the normal direction, relatively large vibrations were induced by vortices shed at the plate bottom that would strike the horizontal truss member. This phenomenon was avoided in the reverse direction. For small bottom opening heights in the normal direction, these vibrations were caused by a suction force that developed at the gate bottom. The gate model in the reverse direction was preferred because of its low overall vibrational response under general gate opening and flow level combinations.