• Title/Summary/Keyword: Optimal weights,

Search Result 399, Processing Time 0.027 seconds

Image Processing Methods for Measurement of Lettuce Fresh Weight

  • Jung, Dae-Hyun;Park, Soo Hyun;Han, Xiong Zhe;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.89-93
    • /
    • 2015
  • Purpose: Machine vision-based image processing methods can be useful for estimating the fresh weight of plants. This study analyzes the ability of two different image processing methods, i.e., morphological and pixel-value analysis methods, to measure the fresh weight of lettuce grown in a closed hydroponic system. Methods: Polynomial calibration models are developed to relate the number of pixels in images of leaf areas determined by the image processing methods to actual fresh weights of lettuce measured with a digital scale. The study analyzes the ability of the machine vision- based calibration models to predict the fresh weights of lettuce. Results: The coefficients of determination (> 0.93) and standard error of prediction (SEP) values (< 5 g) generated by the two developed models imply that the image processing methods could accurately estimate the fresh weight of each lettuce plant during its growing stage. Conclusions: The results demonstrate that the growing status of a lettuce plant can be estimated using leaf images and regression equations. This shows that a machine vision system installed on a plant growing bed can potentially be used to determine optimal harvest timings for efficient plant growth management.

Structural Design and Analysis of Autonomous Underwater Vehicle by Fiber Reinforced Plastics (FRP에 의한 무인잠수정의 설계와 구조해석)

  • Kim, Yun-Hae;Bae, Sung-Youl;Jo, Young-Dae;Moon, Kyung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.937-942
    • /
    • 2008
  • This research investigated to find out the possibilities of applying FRPs to the AUVs. In this study, two kinds of metal materials, which is one of the popularly used materials for manufacturing AUVs, and 6 kinds of FRP materials were considered. Material properties of FRPs were derived by tensile tests and chemical analysis. Moreover, various types of AUVs were designed by 8 kinds of materials. From structural analysis, we can find out that the weights of AUV by CFRP-Autoclave could be reduced by 60% in comparison with the weights of AUV by Al 7075-T6. Also, 40% weight reduction could be expected compared to the AUV by Ti-6Al-4V. In this result, we could conclude that the material of CFRP-Autoclave have various merits and potentialities as one of the AUV materials.

A Estimated Neural Networks for Adaptive Cognition of Nonlinear Road Situations (굴곡있는 비선형 도로 노면의 최적 인식을 위한 평가 신경망)

  • Kim, Jong-Man;Kim, Young-Min;Hwang, Jong-Sun;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.573-577
    • /
    • 2002
  • A new estimated neural networks are proposed in order to measure nonlinear road environments in realtime. This new neural networks is Error Estimated Neural Networks. The structure of it is similar to recurrent neural networks; a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models. To show the performance of this one, we control 7 degree simulation, this controller and driver were proved to be effective to drive a car in the environments of nonlinear road systems.

  • PDF

A Dynamic Neural Networks for Nonlinear Control at Complicated Road Situations (복잡한 도로 상태의 동적 비선형 제어를 위한 학습 신경망)

  • Kim, Jong-Man;Sin, Dong-Yong;Kim, Won-Sop;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2949-2952
    • /
    • 2000
  • A new neural networks and learning algorithm are proposed in order to measure nonlinear heights of complexed road environments in realtime without pre-information. This new neural networks is Error Self Recurrent Neural Networks(ESRN), The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between the output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by back-propagation and each weights are updated by RLS(Recursive Least Square). Consequently. this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. We can estimate nonlinear models in realtime by ESRN and learning algorithm and control nonlinear models. To show the performance of this one. we control 7 degree of freedom full car model with several control method. From this simulation. this estimation and controller were proved to be effective to the measurements of nonlinear road environment systems.

  • PDF

A New Route Guidance Method Considering Pedestrian Level of Service using Multi-Criteria Decision Making Technique

  • Joo, Yong-Jin;Kim, Soo-Ho
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.83-91
    • /
    • 2011
  • The route finding analysis is an essential geo-related decision support tool in a LBS(Location based Services) and previous researches related to route guidance have been mainly focused on route guidances for vehicles. However, due to the recent spread of personal computing devices such as PDA, PMP and smart phone, route guidance for pedestrians have been increasingly in demand. The pedestrian route guidance is different from vehicle route guidance because pedestrians are affected more surrounding environment than vehicles. Therefore, pedestrian path finding needs considerations of factors affecting walking. This paper aimed to extract factors affecting walking and charting the factors for application factors affecting walking to pedestrian path finding. In this paper, we found various factors about environment of road for pedestrian and extract the factors affecting walking. Factors affecting walking consist of 4 categories traffic, sidewalk, network, safety facility. We calculated weights about each factor using analytic hierarchy process (AHP). Based on weights we calculated scores about each factor's attribute. The weight is maximum score of factor. These scores of factor are used to optimal pedestrian path finding as path finding cost with distance, accessibility.

Sensorless Speed Control of Induction Motor by Neural Network (신경회로망을 이용한 유도전동기의 센서리스 속도제어)

  • 김종수;김덕기;오세진;이성근;유희한;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.695-704
    • /
    • 2002
  • Generally, induction motor controller requires rotor speed sensor for commutation and current control, but it increases cost and size of the motor. So in these days, various researches including speed sensorless vector control have been reported and some of them have been put to practical use. In this paper a new speed estimation method using neural networks is proposed. The optimal neural network structure was tracked down by trial and error, and it was found that the 8-16-1 neural network has given correct results for the instantaneous rotor speed. Supervised learning methods, through which the neural network is trained to learn the input/output pattern presented, are typically used. The back-propagation technique is used to adjust the neural network weights during training. The rotor speed is calculated by weights and eight inputs to the neural network. Also, the proposed method has advantages such as the independency on machine parameters, the insensitivity to the load condition, and the stability in the low speed operation.

Searching a global optimum by stochastic perturbation in error back-propagation algorithm (오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색)

  • 김삼근;민창우;김명원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

A Finite Capacity Material Requirement Planning System for a Multi-Stage Assembly Factory: Goal Programming Approach

  • Wuttipornpun, Teeradej;Yenradee, Pisal;Beullens, Patrick;van Oudheusden, Dirk L.
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.23-35
    • /
    • 2005
  • This paper aims to develop a practical finite capacity MRP (FCMRP) system based on the needs of an automotive parts manufacturing company in Thailand. The approach includes a linear goal programming model to determine the optimal start time of each operation to minimize the sum of penalty points incurred by exceeding the goals of total earliness, total tardiness, and average flow-time considering the finite capacity of all work centers and precedence of operations. Important factors of the proposed FCMRP system are penalty weights and dispatching rules. Effects of these factors on the performance measures are statistically analyzed based on a real situation of an auto-part factory. Statistical results show that the dispatching rules and penalty weights have significant effects on the performance measures. The proposed FCMRP system offers a good tradeoff between conflicting performance measures and results in the best weighted average performance measures when compared to conventional forward and forward-backward finite capacity scheduling systems.

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF