• Title/Summary/Keyword: Optimal weight function

Search Result 253, Processing Time 0.027 seconds

An Economic Statistical Design of the EWMA Control Charts with Variable Sampling Interval (VSI EWMA 관리도의 경제적 통계적 설계)

  • 송서일;박현규;정혜진
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.1
    • /
    • pp.92-101
    • /
    • 2004
  • Tris paper present an economic statistical design which have statistically constraints for the optimal design of an EWMA control charts with variable sampling interval. Cost function use that proposed by Lorenzen and Vance, and the optimal design parameters include the sample size, control limit width, sampling interval, EWMA weight value. Comparisons between VSI EWMA control charts optimal economic design and optimal economic statistical designs show the following fact. Although have demerits which are more costly than economic design, have merits which to detect shifts more efficiently and to improve statistical performance.

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

Analysis of Optimal Landing Trajectory in Attitude Angular Velocity Influence at Powered Descent Phase of Robotic Lunar Lander (무인 달착륙선의 동력하강단계에서 자세각속도 영향에 따른 최적화 착륙궤적 분석)

  • Park, Jae-ik;Rew, Dong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • In this paper, we propose a lunar landing scenario of a robotic lunar landing mission and implements an optimal landing trajectory at the powered descent phase based on the proposed scenario. The change of attitude of the lunar lander in the power descent phase affects not only the amount of fuel used but also sensor operation of image based navigation. Therefore, the attitude angular velocity is included in the cost function of the optimal control problem to minimize the unnecessary attitude change when the optimal landing trajectory generates at powered descent phase of the lunar landing. The influence of the change of attitude angular velocity on the optimal landing trajectory are analyzed by adjusting the weight of the attitude angular velocity. Based on the results, we suggest the proper weight to generate the optimal landing trajectory in order to minimize the influence of the attitude angular velocity.

Estimation of Quantitative Precipitation Rate Using an Optimal Weighting Method with RADAR Estimated Rainrate and AWS Rainrate (RADAR 추정 강수량과 AWS 강수량의 최적 결합 방법을 이용한 정량적 강수량 산출)

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.485-493
    • /
    • 2006
  • This study is to combine precipitation data with different spatial-temporal characteristics using an optimal weighting method. This optimal weighting method is designed for combination of AWS rain gage data and S-band RADAR-estimated rain data with weighting function in inverse proportion to own mean square error for the previous time step. To decide the optimal weight coefficient for optimized precipitation according to different training time, the method has been performed on Changma case with a long spell of rainy hour for the training time from 1 hour to 10 hours. Horizontal field of optimized precipitation tends to be smoothed after 2 hours training time, and then optimized precipitation has a good agreement with synoptic station rainfall assumed as true value. This result suggests that this optimal weighting method can be used for production of high-resolution quantitative precipitation rate using various data sets.

Structrual Dynamic Analysis of a Diving Springboard to Reach Settled Height - Using Co-rotational Formulation (다이버가 일정한 높이로 도약 시 CR기법을 이용한 스프링보드의 구조 동역학적 해석)

  • Lee, Ji-Woo;Lee, Sang-Yeob;Lee, Sang-Hyeon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.217-221
    • /
    • 2016
  • In this paper, a springboard for diving is analysed to find out how much force a diver should apply to reach specific height when the diver jumps. The springboard is presumed to Co-rotational plane cantilever beam(CR-beam), so EDISON program related to Co-rotational framework is used. The force of the person is supposed to sine function and the demanded height is fixed. Same velocity makes same height regardless of diver's weight. So, the velocity of springboard when the feet of a diver are separated from the springboard is a main factor of the analysis. The result shows that there is no association between deformation and weight and also between velocity and weight. That is, the required force to reach a optimal height is fixed whatever the diver's weight is.

  • PDF

Estimation of Optimal Weight in Tidal Modeling with the Adjoint Method (조석 모델링에서 adjoint 방법 적용시 적정 가중치 산정)

  • Lee, Jae-Hak;Park, Kyeong;Song, Yong-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.177-185
    • /
    • 2000
  • The adjoint method is a method of data assimilation to improve the model results by seeking for model parameters that minimize the cost function and satisfy the governing equations of a model simultaneously. An adjoint package was set up for the two-dimensional linear tidal model and was applied to an idealized domain for an optimal estimation of the open boundary conditions. The assimilating data were selected from the results of forward modeling. Attention is paid on the response of the adjoint package to weighting parameters, the importance of initial estimates of model parameters and the applicability of the adjoint package to the case with varying depth. A procedure to determine optimal weight is presented based on the relationships between weights and other factors.

  • PDF

Lifting Lug by the Change of form Using Multivariate Functions: An Optimal Design Study (다변수 함수를 이용한 형상 변화에 따른 리프팅 러그의 최적 설계에 관한 연구)

  • Choi, Kyung-Shin;Kim, Ji-Jun;Lee, Ji-Han;Chan, Gwang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we proposed an optimal design for determining the shape of a lifting lug freely by applying a multivariate function to the D-type lug, which is commonly used in shipyards. We derived the optimal aspect ratio of the lug through structural analysis and analyzed the safety and behavior of the lug aspect ratio. As a result, two types of final candidates, both lighter than the existing lug weight, were suitable for the ratio. They were found to have the greatest force at an angle of 45 degrees when a load of 100 tons was imposed. When the horizontal and vertical feature ratio of the lug was 1:3, it showed excellent results in terms of safety rates while maintaining weight reduction and functional aspects.

Optimal Processing for Peptic Hydrolysate from Flounder Skin and Its Skincare Function (광어껍질을 활용한 펩신가수분해물 제조공정 최적화와 피부건강 기능성)

  • Kang, You-an;Jin, Sang-Keun;Ko, Jonghyun;Choi, Yeung Joon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.9-24
    • /
    • 2022
  • Low-molecular weight peptides derived from fish collagen exhibit several bioactivities, including antioxidant, antiwrinkle, antimicrobial, antidiabetic, and antihypertension effects. These peptides are also involved in triglyceride suppression and memory improvement. This study aimed to investigate the optimal processing condition for preparing low-molecular weight peptides from flounder skin, and the properties of the hydrolysate. The optimal processing conditions for peptic hydrolysis were as follows: a ratio of pepsin to dried skin powder of 2% (w/w), pH of 2.0, and a temperature of 50℃. Peptic hydrolysate contains several low-molecular weight peptides below 300 Da. Gly-Pro-Hyp(GPHyp) peptide, a process control index, was detected only in peptic hydrolysate on matrix-assisted laser desorption/ionization-time-of-flight(MALDI-TOF) spectrum. 2,2'-azinobis-(3-3-ethylbenzothiazolline-6- sulfonic acid(ABTS) radical scavenging activity of the peptic hydrolysate was comparable to that of 1 mM ascorbic acid, which was used as a positive control at pH 5.5, whereas collagenase inhibition was five times higher with the peptic hydrolysate than with 1 mM ascorbic acid at pH 7.5. However, the tyrosinase inhibition ability of the peptic hydrolysate was lower than that of arbutin, which was used as a positive control. The antibacterial effect of the peptic hydrolysate against Propionibacterium acne was not observed. These results suggest that the peptic hydrolysate derived from a flounder skin is a promising antiwrinkle agent that can be used in various food and cosmetic products to prevent wrinkles caused by ultraviolet radiations.

Minimum Weight Design of Built-up T Based on HCSR (HCSR 기반 T형 조립부재의 최소중량설계)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.389-394
    • /
    • 2017
  • In a conventional ship structure, stiffeners with an asymmetric section, such as inverted angles, are used widely despite the disadvantage of strength compared to the stiffeners with a symmetric section, such as a built-up T. On the other hand, T-type built-up members are attracting more attention than L-type inverted angles due to the increased size of ships. The purpose of this study was to develop an optimal design program for a built-up T, and apply an evolution strategy as an optimization technique. In the optimization process, the gross thickness concept was adopted for the design variables and objective function, and the constraints are set up based on HCSR (Harmonized Common Structural Rules). Using the developed program in this study, the optimal stiffener design was carried out for 300K VLCC and 158K COT of which the orders were obtained lately. The optimal results revealed the weight reduction effect of 144 tons and 60 tons, respectively.

A Study on Reliability Analysis According to the Number of Training Data and the Number of Training (훈련 데이터 개수와 훈련 횟수에 따른 과도학습과 신뢰도 분석에 대한 연구)

  • Kim, Sung Hyeock;Oh, Sang Jin;Yoon, Geun Young;Kim, Wan
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.29-37
    • /
    • 2017
  • The range of problems that can be handled by the activation of big data and the development of hardware has been rapidly expanded and machine learning such as deep learning has become a very versatile technology. In this paper, mnist data set is used as experimental data, and the Cross Entropy function is used as a loss model for evaluating the efficiency of machine learning, and the value of the loss function in the steepest descent method is We applied the Gradient Descent Optimize algorithm to minimize and updated weight and bias via backpropagation. In this way we analyze optimal reliability value corresponding to the number of exercises and optimal reliability value without overfitting. And comparing the overfitting time according to the number of data changes based on the number of training times, when the training frequency was 1110 times, we obtained the result of 92%, which is the optimal reliability value without overfitting.