• Title/Summary/Keyword: Optimal technology

Search Result 8,771, Processing Time 0.044 seconds

Optimal Investment of Capacity & Production Planning of Flexible Manufacturing System Considering Economies of Scope (범위의 경제를 고려한 유연생산시스템의 최적 용량 투자 및 생산 계획)

  • Lee Deok-Ju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.229-244
    • /
    • 2004
  • This study addresses the problem of flexible technology acquisition in multi-product market when demands are uncertain. We confine the concept of flexibility to the ability of manufacturing system to produce a number of different types of products, called product-mix flexibility type. And an analytical model in which economies of scope is incorporated explicitly as a feature of flexible technology is presented to find the optimal investment decision to acquire flexible technology and optimal production planning. The characteristics of optimal investment strategy related to capacity and production planning are discussed.

  • PDF

Exploiting Multichannel Diversity in Spectrum Sharing Systems Using Optimal Stopping Rule

  • Xu, Yuhua;Wu, Qihui;Wang, Jinlong;Anpalagan, Alagan;Xu, Yitao
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.272-275
    • /
    • 2012
  • This letter studies the problem of exploiting multichannel diversity in a spectrum sharing system, where the secondary user (SU) sequentially explores channel state information on the licensed channels with time consumption. To maximize the expected achievable throughput for the SU, we formulate this problem as an optimal stopping problem, whose objective is to choose the right channel to stop exploration based on the observed signal-to-noise ratio sequence. Moreover, we propose a myopic but optimal rule, called one-stage look-ahead rule, to solve the stopping problem.

Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM

  • Chen, Jianqiao;Peng, Wenjie;Ge, Rui;Wei, Junhong
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.407-421
    • /
    • 2009
  • The present paper addresses the optimal design of composite laminates with the aim of minimizing free-edge delamination stresses. A technique involving the application of particle swarm optimization (PSO) integrated with FEM was developed for the optimization. Optimization was also conducted with the zero-order method (ZOM) included in ANSYS. The semi-analytical method, which provides an approximation of the interlaminar normal stress of laminates under in-plane load, was used to partially validate the optimization results. It was found that optimal results based on ZOM are sensitive to the starting design points, and an unsuitable initial design set will lead to a result far from global solution. By contrast, the proposed method can find the global optimal solution regardless of initial designs, and the solutions were better than those obtained by ZOM in all the cases investigated.

Optimal Design of a Variable-Speed Cam for Power Circuit Breaker (고압 회로차단기의 비등속 회전 캠의 최적설계)

  • Kim, Jun-Hyeong;An, Gil-Yeong;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.47-53
    • /
    • 2001
  • Power Circuit Breaker uses a variable-speed cam mechanism actuated by pre-loaded spring force. This paper presents the optimal design procedure for a variable-speed cam mechanism based on the dynamic model of a complete spring-actuated cam system. The optimal cam is compared with an original cam. Simulation results show that the dynamic behaviors of the designed cam are superior to those of the original cam.

  • PDF

An overview of decentralized optimal fault-tolerant supervisory control systems

  • Cho, K.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.358-361
    • /
    • 1996
  • In this paper, we discuss decentralized optimal fault tolerant supervisory control issues on the basis of failure analysis and diagnosis from the angle of discrete event dynamic system. We address the detectability and the observability problems, and develope fault tolerant supervisory control system upon the failure analysis and diagnosis schemes. A complete min-cut is introduced and the procedure for finding the achievable or nonachievable layered optimal legal sublanguages is suggested for a preferential option among the reachable states in the controlled plant. A layered optimal supervisory control framework is proposed upon these. We extend the concept of decentralized supervisory control by considering the problem of combination of decentralized with centralized control in case pure decentralized control happens to be inadequate. We introduce the concept of locally controllable pair and present a hybrid decentralized supervisory control framework. Finally, we propose the analytical framework for a decentralized optimal fault tolerant supervisory control systems.

  • PDF

Optimal control approach to resolve the redundancy of robot manipulators

  • Kim, Sung-Woo;Leen, Ju-Jang;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.234-239
    • /
    • 1993
  • Most of the control problem is for the redundant manipulators use the pseudo-inverse control, thit is, the redundancy is resolved by the pseudo-inverse of the Jacobian matrix and then the controller is designed based on this resolution. However, this pseudo-inverse control has some problems when the redundant robot repeats the cyclic tasks. This is because the pseudo-inverse resolution is a local solution that generates the different configurations of the robot arm for the same hand position. Therefore it is necessary to find the global solution that maintains the optimal configuration of the robot for the repetitive tasks. In this paper, we want to propose a redundancy resolution method by the optimal theory that uses the calculus of variation. The problem formulations are : first to convert the optimal resolution problem to an optimal control problem and then to resolve the redundancy using the necessary conditions of optimal control.

  • PDF

Optimal Capacitor Placement Considering Voltage-stability Margin with Hybrid Particle Swarm Optimization

  • Kim, Tae-Gyun;Lee, Byong-Jun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.786-792
    • /
    • 2011
  • The present paper presents an optimal capacitor placement (OCP) algorithm for voltagestability enhancement. The OCP issue is represented using a mixed-integer problem and a highly nonlinear problem. The hybrid particle swarm optimization (HPSO) algorithm is proposed to solve the OCP problem. The HPSO algorithm combines the optimal power flow (OPF) with the primal-dual interior-point method (PDIPM) and ordinary PSO. It takes advantage of the global search ability of PSO and the very fast simulation running time of the OPF algorithm with PDIPM. In addition, OPF gives intelligence to PSO through the information provided by the dual variable of the OPF. Numerical results illustrate that the HPSO algorithm can improve the accuracy and reduce the simulation running time. Test results evaluated with the three-bus, New England 39-bus, and Korea Electric Power Corporation systems show the applicability of the proposed algorithm.

Optimal Planning for Dispersed Generating Sources in Distribution Systems (배전계통에 있어서 열병합 분산형전원의 최적 도입계획에 관한 기초적 연구)

  • Shim, Hun;Rho, Dae-Seok;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.513-515
    • /
    • 2000
  • This paper deals with a method for determining an optimal operation strategy of dispersed generating sources considering thermal merits. The optimal operation of these sources can be determined by the principle of equal incremental fuel cost. This paper presents an optimal operation strategy using the Kuhn-Tucker's optimal conditions and also an priority method to decide the optimal location of those sources in power systems. The validity of the proposed algorithms are demonstrated using a model system.

  • PDF

A Study on Adaptive Autoreclosure Scheme with Real-time Transient Stability

  • Jang Sung-Ik;Shin Myong-Chul;Yoon Chang-Dae;Campbell Ryan C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.8-15
    • /
    • 2006
  • Since the power swing depends on the operating time of the relay, the swing's magnitude can be reduced by an autoreclosure relaying system with an optimal reclosing algorithm. This paper proposes a method for stability improvement using optimal reclosure relaying. An optimal reclosure algorithm is applied to identify both temporary and permanent faults, and to predict system stability by applying WAM and high speed communication technology. It provides optimal control by predicting and determining the degree of stability, considering the real time transient stability using EEEAC. For temporary faults, the algorithm determines the system's stability and either recloses optimally for stable systems, or inserts series capacitance before optimal reclosure for unstable systems. It also applies an optimal reclosure algorithm to minimize shock and damage to the power system when reclosure fails due to permanent faults.

Multi-Objective Optimal Design of a Single Phase AC Solenoid Actuator Used for Maximum Holding Force and Minimum Eddy Current Loss

  • Yoon, Hee-Sung;Eum, Young-Hwan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.218-223
    • /
    • 2008
  • A new Pareto-optimal design algorithm, requiring least computational work, is proposed for a single phase AC solenoid actuator with multi-design-objectives: maximizing holding force and minimizing eddy current loss simultaneously. In the algorithm, the design space is successively reduced by a suitable factor, as iteration repeats, with the center of pseudo-optimal point. At each iteration, the objective functions are approximated to a simple second-order response surface with the CCD sampling points generated within the reduced design space, and Pareto-optimal solutions are obtained by applying($1+{\lambda}$) evolution strategy with the fitness values of Pareto strength.