• Title/Summary/Keyword: Optimal structure

Search Result 3,287, Processing Time 0.032 seconds

A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm (볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구)

  • Wonjin Choi;Beom-Sik Moon;Chae-Uk Song;Young-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.164-170
    • /
    • 2024
  • The light buoy, a floating structure at sea, is prone to drifting due to external factors such as oceanic weather. This makes it imperative to monitor for any loss or displacement of buoys. In order to address this issue, the Ministry of Oceans and Fisheries aims to issue alerts for buoy displacement by analyzing historical buoy position data to detect patterns. However, periodic lifting inspections, which are conducted every two years, disrupt the buoy's location pattern. As a result, new patterns need to be analyzed after each inspection for location monitoring. In this study, buoy position data from various periods were analyzed using convex hull and distance-based clustering algorithms. In addition, the optimal data collection period was identified in order to accurately recognize buoy location patterns. The findings suggest that a nine-week data collection period established stable location patterns, explaining approximately 89.8% of the variance in location data. These results can improve the management of light buoys based on location patterns and aid in the effective monitoring and early detection of buoy displacement.

Development of Deep Recognition of Similarity in Show Garden Design Based on Deep Learning (딥러닝을 활용한 전시 정원 디자인 유사성 인지 모형 연구)

  • Cho, Woo-Yun;Kwon, Jin-Wook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.2
    • /
    • pp.96-109
    • /
    • 2024
  • The purpose of this study is to propose a method for evaluating the similarity of Show gardens using Deep Learning models, specifically VGG-16 and ResNet50. A model for judging the similarity of show gardens based on VGG-16 and ResNet50 models was developed, and was referred to as DRG (Deep Recognition of similarity in show Garden design). An algorithm utilizing GAP and Pearson correlation coefficient was employed to construct the model, and the accuracy of similarity was analyzed by comparing the total number of similar images derived at 1st (Top1), 3rd (Top3), and 5th (Top5) ranks with the original images. The image data used for the DRG model consisted of a total of 278 works from the Le Festival International des Jardins de Chaumont-sur-Loire, 27 works from the Seoul International Garden Show, and 17 works from the Korea Garden Show. Image analysis was conducted using the DRG model for both the same group and different groups, resulting in the establishment of guidelines for assessing show garden similarity. First, overall image similarity analysis was best suited for applying data augmentation techniques based on the ResNet50 model. Second, for image analysis focusing on internal structure and outer form, it was effective to apply a certain size filter (16cm × 16cm) to generate images emphasizing form and then compare similarity using the VGG-16 model. It was suggested that an image size of 448 × 448 pixels and the original image in full color are the optimal settings. Based on these research findings, a quantitative method for assessing show gardens is proposed and it is expected to contribute to the continuous development of garden culture through interdisciplinary research moving forward.

A Study on the Quality of Healthcare Services for Four Critical Illnesses and the Maintenance of Right to Protection and Dignity in a Senior General Hospital (상급종합병원의 4대 중증질환 의료 서비스 품질과 보호받을 권리 및 존엄성 유지에 관한 연구)

  • Woojin Lee;Minsuk Shin
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.531-550
    • /
    • 2023
  • Purpose: The unique nature of life-and-death healthcare services sets them apart from other service industries. While many studies exist on the relationship between healthcare services and customer satisfaction, most of them focus on mildly ill patients, ignoring the differences between critically ill and non-seriously ill patients. This study discusses the actual quality of healthcare services for patients who are facing life-threatening illnesses and are on life support, as well as their right to protection and dignity. Methods: The survey conducted to 149 patients with the four major illnesses: cancer, heart disease, brain disease and rare and incurable disease, those who have experiences with senior general hospitals. Results: The basic statistics of this study are adequate to represent the four major critical illnesses, and the reliability and validity of this study's hypotheses, which were measured by multiple items, were analyzed, and the internal consistency was judged to be high. In addition, it was found that the convergent validity was good and the discriminant validity was also secured. When examining the goodness of fit of the hypotheses, the SRMR, which is the standardized root mean square of residuals that measures the difference between the covariance matrix of the data variables and the theoretical covariance matrix structure of the model, met the optimal criteria. Conclusion: The academic implications of this study are differentiated from other studies by moving away from evaluating the quality of healthcare services for mildly ill patients and focusing on the rights and dignity of patients with life-threatening illnesses in four senior general hospitals. In terms of academic implications, this study enriches the depth of related studies by demonstrating the right to protection and dignity as a factor of patient-centeredness based on physical environment quality, interaction quality, and outcome quality, which are presented as sub-factors of healthcare quality. We found that the three quality factors classified by Brady and Cronin (2001) are optimized for healthcare quality assessment and management, and that the results of patients' interaction quality assessment can be used to provide a comprehensive quality rating for hospitals. Health and human rights are inextricably linked, so assessing the degree to which rights and dignity are protected can be a superior and more comprehensive measurement tool than traditional health level measures for healthcare organizations. Practical implications: Improving the quality of the physical environment and the quality of outcomes is an important challenge for hospital managers who attract patients with life and death conditions, but given the scale and economics of time, money, and human inputs, improving the quality of interactions and defining them as performance indicators in hospital quality management is an efficient way to create maximum value in the short term.

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.

Radiologic assessment of the optimal point for tube thoracostomy using the sternum as a landmark: a computed tomography-based analysis

  • Jaeik Jang;Jae-Hyug Woo;Mina Lee;Woo Sung Choi;Yong Su Lim;Jin Seong Cho;Jae Ho Jang;Jea Yeon Choi;Sung Youl Hyun
    • Journal of Trauma and Injury
    • /
    • v.37 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • Purpose: This study aimed at developing a novel tube thoracostomy technique using the sternum, a fixed anatomical structure, as an indicator to reduce the possibility of incorrect chest tube positioning and complications in patients with chest trauma. Methods: This retrospective study analyzed the data of 184 patients with chest trauma who were aged ≥18 years, visited a single regional trauma center in Korea between April and June 2022, and underwent chest computed tomography (CT) with their arms down. The conventional gold standard, 5th intercostal space (ICS) method, was compared to the lower 1/2, 1/3, and 1/4 of the sternum method by analyzing CT images. Results: When virtual tube thoracostomy routes were drawn at the mid-axillary line at the 5th ICS level, 150 patients (81.5%) on the right side and 179 patients (97.3%) on the left did not pass the diaphragm. However, at the lower 1/2 of the sternum level, 171 patients (92.9%, P<0.001) on the right and 182 patients (98.9%, P= 0.250) on the left did not pass the diaphragm. At the 5th ICS level, 129 patients (70.1%) on the right and 156 patients (84.8%) on the left were located in the safety zone and did not pass the diaphragm. Alternatively, at the lower 1/2, 1/3, and 1/4 of the sternum level, 139 (75.5%, P=0.185), 49 (26.6%, P<0.001), and 10 (5.4%, P<0.001), respectively, on the right, and 146 (79.3%, P=0.041), 69 (37.5%, P<0.001), and 16 (8.7%, P<0.001) on the left were located in the safety zone and did not pass the diaphragm. Compared to the conventional 5th ICS method, the sternum 1/2 method had a safety zone prediction sensitivity of 90.0% to 90.7%, and 97.3% to 100% sensitivity for not passing the diaphragm. Conclusions: Using the sternum length as a tube thoracostomy indicator might be feasible.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

Structure activity relationship on the herbicidal activity by the N-phenyl substituents of 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-Phenylpropionamide derivatives in down land (수답에서 2-(4-(6-chloro-2-benz-oxazolyloxy)phenoxy)-N-phenylpropionamide 유도체 중 N-phenyl 치환체들의 제초활성)

  • Sung, Nack-Do;Lee, Sang-Ho;Ko, Young-Kwan;Lee, Kyung-Mo;Kim, Dae-Whang;Kim, Tae-Joon
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.2
    • /
    • pp.21-28
    • /
    • 2000
  • A new fourty six 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)-N-phenylpro- pionamide derivatives were synthesized and the herbicidal activities against rice plant and barnyard grass with pre-emergence in down land were measured. The structure activity relationships (SAR) between the activities and physicochemical parameters of the substituted(X) N-phenyl group in substrates were analyzed and discussed by Free- Wilson and Hansch method from the basis on the former study (Sung. et. al., 1999). The conditions of selective herbicide activity both the barnyard grass and rice plant are shown that the optimal hydrophobicity, $({\pi})_{opt.}=1.34$ and electron donating with field effect (F<0) of meta and ortho, para-substituted mono or disubstituent on the N-phenyl ring were found to contribute significantly. The herbicidal activities against barnyard grass are roughly the same as the results in up land whereas damage to rice plant in down land more increase than that of up land. Degradation products in water are 2-(4-(6-chloro-2-benzoxazolyloxy)phenoxy)propionic acid ((A)) (obs. pKa=4.35 & obs. logP=4.77) and 6-chloro-2-benzoxazolone (B) (obs. pKa=8.40 & obs. logP=2.90). These results were supposing that the hydrolysis product of substrates, (A) is comparatively absorbed in rice plant but not in barnyard grass. And it is assumed from the SAR equations that the 2,6-dimethyl-4-methoxymethyl group substituent ($pI_{50}=5.41$, 3g/ha) is selected as the most highest herbicidal activity against barnyard grass in green house.

  • PDF

Analysis of Cost Structures of National R&D Programs for Effective National R&D Management (국가연구개발 정률예외사업의 원가구조분석을 통한 합리적인 사업관리방안)

  • Cho, Seong-Pyo;Ha, Seok-Tae;Hwang, Myung-Ku
    • Journal of Technology Innovation
    • /
    • v.25 no.2
    • /
    • pp.153-179
    • /
    • 2017
  • Korean government has granted fixed indirect cost rates to several exceptional R&D programs which is lower than the predetermined rate by the government. It has been needed to evaluate the validity of exceptional R&D programs and determine the optimal indirect costs rate of the programs. This study analyzes the cost structure and explores drivers of indirect costs of exceptional R&D programs and evaluates the validity of current indirect costs rates. Finally, we propose the formulas for indirect costs rates of exceptional R&D programs. We analyze the cost structure of the exceptional R&D programs. Equipments and material costs are 50% in infra building program. Scholarship to students is 43% in HRD program. Equipments and material costs are 50% and R&D activity costs are 31% in international R&D program. Main cost components of evaluation program are salary(37%), R&D execution costs(21%) and R&D activity costs(19%). We propose three formulas of indirect costs for exceptional programs. 1) The cost items with exceptionally large amount are excluded in the base of formula for indirect costs. 2) Fixed indirect cost rate is applied for specific R&D programs. 3) Upper bound is set for the cost items with exceptionally large amount in the calculation of indirect costs rate. Our proposal is expected to contribute to the improvement of the efficiency of national R&D programs.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.