• Title/Summary/Keyword: Optimal stacking sequence

Search Result 42, Processing Time 0.029 seconds

A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구)

  • 한흥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF

A Study on the Grinding Characteristics of the Carbon Fiber Epoxy Composite Material Grinding Temperature (탄소섬유 에폭시 복합재료 연삭온도에 의한 연삭특성)

  • 한흥삼;이동주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.65-70
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently requires cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite surface grinding were suggested.

  • PDF

An Effective Method for Suppressing Second-Order Beams of 2D Edge Slot Phased Arrays

  • Park, Jong-Kuk;Na, Hyung-Gi;Kim, Chan-Hong;Lee, Dong-Kook
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • An effective method is proposed to suppress the second-order beams(SOBs) that result from the cross-polarized fields of 2D edge slot arrays. By rearranging the conventional sequence of stacking waveguides, the SOBs are shown to be considerably reduced and the 9 dB suppression is obtained. The optimal sequence is obtained from the genetic and exhaustive searches and its effects are verified using near-field measurements as well as theoretical estimation. Since the proposed method requires no additional polarizing structures such as baffles, it is very easy and cost-effective to implement.

Design of composite channel section beam for optimal dimensions (최적 단면 치수를 가지는 복합재료 U-Beam의 설계)

  • 이헌창;전흥재;박지상;변준형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.276-279
    • /
    • 2002
  • A problem formulation and solution for design optimization of laminated composite channel section beam is presented in this study. The objective of this study is the determination of optimum section dimensions of composite laminated channel section beam which has equivalent flexural rigidities to flexural rigidities of steel channel section beam. The analytical model is based on the laminate theory and accounts for the material coupling for arbitrary laminate stacking sequence configuration. The model is used to determine the optimal section dimensions of composite channel section beam. The web height, flange width and thickness of the beam are treated as design variables. The solutions described are found using a global search algorithm, Genetic Algorithms (GA).

  • PDF

Analysis and Optimization of Composite Links (복합재료 링크의 해석 및 최적화)

  • 김수현;강지호;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.103-107
    • /
    • 2003
  • The objective of this thesis is to develop the optimal design of composite links containing complicated cross-section. To accomplish this objective, a composite links structural analysis program was developed. The method of calculating effective modulus of composite beam containing complicated cross-section is proposed. Genetic algorithm was implemented for the optimization method to manipulate the discrete ply angles as the design variables and to utilize its high reliability to find the global optimum. The design variables were the number of plies, the fiber orientations and the stacking sequence. The optimal design of composite links was performed by genetic algorithm to minimize the weight of the structure and to constrain ply failure

  • PDF

BJRNAFold: Prediction of RNA Secondary Structure Base on Constraint Parameters

  • Li, Wuju;Ying, Xiaomin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.287-293
    • /
    • 2005
  • Predicting RNA secondary structure as accurately as possible is very important in functional analysis of RNA molecules. However, different prediction methods and related parameters including terminal GU pair of helices, minimum length of helices, and free energy systems often give different prediction results for the same RNA sequence. Then, which structure is more important than the others? i.e. which combinations of the methods and related parameters are the optimal? In order to investigate above problems, first, three prediction methods, namely, random stacking of helical regions (RS), helical regions distribution (HD), and Zuker's minimum free energy algorithm (ZMFE) were compared by taking 1139 tRNA sequences from Rfam database as the samples with different combinations of parameters. The optimal parameters are derived. Second, Zuker's dynamic programming method for prediction of RNA secondary structure was revised using the above optimal parameters and related software BJRNAFold was developed. Third, the effects of short-range interaction were studied. The results indicated that the prediction accuracy would be improved much if proper short-range factor were introduced. But the optimal short-range factor was difficult to determine. A user-adjustable parameter for short-range factor was introduced in BJRNAFold software.

  • PDF

Nonlocal bending, vibration and buckling of one-dimensional hexagonal quasicrystal layered nanoplates with imperfect interfaces

  • Haotian Wang;Junhong Guo
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.557-570
    • /
    • 2024
  • Due to interfacial ageing, chemical action and interfacial damage, the interface debonding may appear in the interfaces of composite laminates. Particularly, the laminates display a side-dependent effect at small scale. In this work, a three-dimensional (3D) and anisotropic thick nanoplate model is proposed to investigate the effects of imperfect interface and nonlocal parameter on the bending deformation, vibrational response and buckling stability of one-dimensional (1D) hexagonal quasicrystal (QC) layered nanoplates. By combining the linear spring model with the transferring matrix method, exact solutions of phonon and phason displacements, phonon and phason stresses of bending deformation, the natural frequencies of vibration and the critical buckling loads of 1D hexagonal QC layered nanoplates are derived with imperfect interfaces and nonlocal effects. Numerical examples are illustrated to demonstrate the effects of the imperfect interface parameter, aspect ratio, thickness, nonlocal parameter, and stacking sequence on the bending deformation, the vibrational response and the critical buckling load of 1D hexagonal QC layered nanoplate. The results indicate that both the interface debonding and nonlocal effect can reduce the stiffness and stability of layered nanoplates. Increasing thickness of QC coatings can enhance the stability of sandwich nanoplates with the perfect interfaces, while it can reduce first and then enhance the stability of sandwich nanoplates with the imperfect interfaces. The biaxial compression easily results in an instability of the QC layered nanoplates compared to uniaxial compression. QC material is suitable for surface layers in layered structures. The mechanical behavior of QC layered nanoplates can be optimized by imposing imperfect interfaces and controlling the stacking sequence artificially. The present solutions are helpful for the various numerical methods, thin nanoplate theories and the optimal design of QC nano-composites in engineering practice with interfacial debonding.

Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials (탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향)

  • Hwang, Jin-Ho;Hwang, Woon-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.

Development of Composite Rollers for Polymer Film Processing (고분자 필름 제조 공정용 복합재료 롤러의 개발)

  • 방경근;이대길
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • The pressing roller was designed and manufactured with high modulus carbon fiber composite material to exploit the high specific stiffness of the composite material. the optimal stacking sequence for the pressing roller was obtained from the FE analysis and the shape of the rubber coating layer was determined based on the calculated deflection for the uniform pressure on the film along the axial length of the pressing roller. Then the static deflection of the manufactured composite pressing roller was experimentally evaluated in comparison with analysis result and dynamic characteristics were measured through vibrational test.

  • PDF

Tensile load bearing capacities of co-cured single and double lap joints (외면 및 양면겹치기 동시경화조인트의 인장하중 전달용량에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.95-98
    • /
    • 2001
  • Co-cured joining method is an efficient joining technique because both curing and bonding processes for the composite structures can be achieved simultaneously. It requires neither an adhesive nor a surface treatment of the composite adherend because the excess resin, which is extracted from composite materials during consolidation, accomplishes the co-cured joining process. In this paper, we considered three bond parameters, affecting tensile load bearing capacity of the co-cured single and double lap joints. Filially, we nave presented optimal bonding conditions for co-cured single and double lap joints with steel and composite adherends under tensile loads.

  • PDF