• 제목/요약/키워드: Optimal servo control

검색결과 174건 처리시간 0.028초

추적오차를 최소화 하기위한 최적제어기 설계및 실현화에 관한 연구 (Study of optimal controller design & experiment to minimize tracking error)

  • 김광태;김재환;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.164-168
    • /
    • 1988
  • This paper utilizes an optimal control law for the accurate tracking servo system design. The devivation of a simple control law implementing microprocessor is made to minimize position and speed error of the controller. The 16 bit microprocessor receives command angular position and calculate the control algorithm for accurate tracking and provides control system gain scheduling to achieve very short settling time. Simulation results and some experimental results of the position controlled tracking using 4.5Kw DC servo motor are shown.

  • PDF

포 구동시스템에 대한 모드 스위칭 제어기 설계 (Design of a Mode Switching Controller for Gun Servo System)

  • 임정빈;백승문;유준
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.425-430
    • /
    • 2006
  • To meet an increasing demand for high performance in gun dynamic plant, both a precise and a fast response positioning are strongly required for the gun servo system. A mode switching control(MSC) scheme, which includes a fine stabilizing controller, fast positioning one and a switching function, is widely used to meet this requirement. Stabilization is performed through PID controller, while a time optimal control method is used for target designation. In this paper, a modified PTOS(Proximate Time Optimal Servomechanism) algorithm is derived so as to accommodate the damping term in the gun plant model. Also, applying a mode switching strategy, the bumpless transfer is made possible when the controller switches from PTOS to PID. To show the effectiveness of the overall control system, simulation results are given including the gun dynamics.

2자유도 로봇의 관절외란해석과 응용 (Joint disturbance torque analysis for 2 DOF robots and its application)

  • 최명환
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.289-293
    • /
    • 1998
  • In a independent joint servo control of robots, the performance of the control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces. These act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increase, and makes the high speed - high precision control more difficult to achieve. In this paper, a solution to the optimal path placement problem is presented that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to the class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법 (Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement)

  • 최명환
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

로봇의 관절외란해석을 이용한 직선궤적 위치결정 (Joint disturbance torque analysis for robots and its application in straight line path placement)

  • 최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

$\delta$-연산자를 이용한 강인한 모델 추종형 서보 제어 시스템의 구성에 관한연구 (A Design on Robust Model Following Servo System Using $\delta$--Operator)

  • 김정택;황현준
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.121-126
    • /
    • 2000
  • In the fast sampling limit the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that covers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control system The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

코깅 토크의 영향 저감을 위한 서보 모터 적응제어 (An adaptive control of servo motors for reducing the effect of cogging torques)

  • 이수한;허상진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.291-294
    • /
    • 2004
  • Many researches have been focused on optimal designs of a pole shape in order to reduce cogging torques, which are generated between permanent magnets and slots. In this paper, an adaptive controller is proposed for reducing the effect of cogging torques in servo motors. The controller stabilizes the control system and shows an excellent trajectory tracking performance compared to the conventional PD controller.

  • PDF

코깅 토크의 영향 저감을 위한 서보 모터 적응제어 (An Adaptive Control of Servo Motors for Reducing the Effect of cogging Torques)

  • 이수한;허상진;신규현
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.70-75
    • /
    • 2005
  • Many researches have been focused on optimal designs of a pole shape in order to reduce cogging torques, which are generated between permanent magnets and slots. In this paper, an adaptive controller is proposed fur reducing the effect of cogging torques in servo motors. The controller stabilizes the control system and shows an excellent trajectory tracking performance compared to the conventional PD controller.

노즐/플래퍼형 유량제어 서보밸브의 특성에 관한 연구 (A Study On Characteristics of Nozzle/Flapper Type Flow Control Servo Valve)

  • 윤소남;강보식;성백주;김형의
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.54-62
    • /
    • 2000
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of flow control servo valve with high response characteristics, and to verify the validity of the design factors. In this study, force feedback type flow control valve with nozzle/flapper and with no drain is studied. And, the effect of the parameters, such as fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

Optimal design of an electro-pneumatic automatic transfer system

  • Um, Taijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.71-75
    • /
    • 1994
  • This paper presents a method of optimal design of an automatic transfer system which is controlled by the electro-pneumatic servo scheme. The electro-pneumatic automatic transfer system can move parts to desired points or displace defective parts. The dynamic performance of the system can be examined by observing the behavior of the output. The output of the servo control system is the motion of the cylinder, pneumatic actuator. The dynamic performance of the cylinder is governed by the parameters of the components of the entire system. The optimal design can be accomplished by selecting of the parameters such that the desired dynamic performance of the cylinder is obtained. The optimal set of parameters might be obtained through the repeated simulations. Repeated simulations, however, is not effective to determine the optimal set of parameters since the set of parameters is large. This paper presents modeling, application of an optimization method, and the numerical results. The optimization algorithm utilizes the concept of the conjugate gradient method. The results show that the suggested optimization scheme can render faster convergence of iteration compared to other method based on an algebraic optimization method and can reduce the design efforts.

  • PDF