• Title/Summary/Keyword: Optimal reservoir

Search Result 216, Processing Time 0.026 seconds

Design of convection current circulation system in reservoir using CFD simulation (CFD모사를 이용한 저수지 물순환장치 유동 설계)

  • Lee, Yosang
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.133-142
    • /
    • 2012
  • Convection Current Circulation System(CCCS) in stratified reservoir controls development of anaerobic condition and algal bloom during summer. In order to increase the CCCS effectiveness, we analyze diverse design parameters to make optimize the flow pattern in reservoir. In this study, we interpret the internal flow with installation and operation condition of CCCS based on CFD in reservoir. Design variables of CCCS is reservoir depth, stratification strength, distance of between CCCS and so on. Since reservoir depth and stratification strength in variables is depending on natural phenomenon, we evaluated current circulation effect by distance of CCCS and proposed the optimal design condition using CFD simulation. Flow and diffusion changes in water body was assessed by temperature and dye test. Changes in water floor temperature at 40m intervals was slowly descending over 37 hours. Dye diffusion simulation at 60m intervals, the radius of the spread between two devices were overlapped after 12 hours.

An Evaluation of Multi-Reservoir Operation Weighting Coefficients Using Fuzzy DEA taking into account Inflow Variability (유입량의 변동성을 고려한 Fuzzy DEA 기반의 댐 군 연계운영 가중치 대안 평가)

  • Kim, Yong-Ki;Kim, Jae-Hee;Kim, Sheung-Kown
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.220-230
    • /
    • 2011
  • The multi-reservoir operation problem for efficient utilization of water resources involves conflicting objectives, and the problem can be solved by varying weight coefficient on objective functions. Accordingly, decision makers need to choose appropriate weight coefficients balancing the trade-offs among multiple objectives. Although the appropriateness of the weight coefficients may depend on the total amount of water inflow, reservoir operating policy may not be changed to a certain degree for different hydrological conditions on inflow. Therefore, we propose to use fuzzy Data Envelopment Analysis (DEA) to rank the weight coefficients in consideration of the inflow variation. In this approach, we generate a set of Paretooptimal solutions by applying different weight coefficients on Coordinated Multi-reservoir Operating Model. Then, we rank the Pareto-optimal solutions or the corresponding weight coefficients by using Fuzzy DEA model. With the proposed approach, we can suggest the best weight coefficients that can produce the appropriate Pareto-optimal solution considering the uncertainty of inflow, whereas the general DEA model cannot pinpoint the best weight coefficients.

Statistical Analysis of Irrigation Reservoir Water Supply Index (관개용저수지 용수공급지수(IRWSI)의 확률통계 분석)

  • 김선주;이광야;강상진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.58-66
    • /
    • 1998
  • Irrigation Reservoir Water Supply Index(IRWSI), which can be applied to the effective supply and management of the irrigation water resources, was developed. IRWSI was formulated as resealed nonexceedance probabilities of two hydrologic components : reservoir storage ratio and precipitation. To generate nonexceedance probability of hydrologic component, it was important to define the optimal one among the various probability distribution function in the state of nature. To define an optimal probability distribution, in this study, four types of probability distribution function were tested by the K-S fitting, and for the calculation of IRWSI, reservoir storage ratio(%) and precipitation used Normal distribution & Gamma distribution, respectively. In this study, the weight coefficients of a and b for each hydrologic component, which is precipitation and reservoir storage ratio, was decided as 0.8 and 0.2, respectively. While some studies changed weight coefficients according to the size of basin area, this study used same values without considering that. From the analysis of drought characteristics, it was found that the IRWSI was sensitive to the size of irrigation area rather than the size of basin area, and the south-eastern region of Korea had been suffered from severe drought damage.

  • PDF

A Study of Optimal Operation Policy using Risk Evaluation Criteria(I) (for the Daechung Multi-purpose Reservoir) (위험도 평가기준을 적용한 저수지 최적운영방안 연구(I) (대청댐을 중심으로))

  • Park, Myeong-Gi;Kim, Jae-Han;Jeong, Gwan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The application of conventional method for optimizing firm water supply and hydro-electric power generation has some limitation during abnormal or extreme drought periods. Hashimoto et al. (1982) suggested there risk evaluation criteria such as reliability, resilience, and vulnerability. These three criteria have been incorporated into a mixed-integer programming model for evaluating the possible performance of water- supply reservoir (Moy et al., 1986; Srinivasan et al., 1999). However, till now, these kind of researches have been conducted only for water-supply reservoir. Therefore there have been no other study for multi-purpose dam including hydro-electric power generation. This study presents an improved formulation of the previous model for evaluating a multi-purpose reservoir system operation considering water supply and hydro-electric power generation. The modified model was applied to the Daechung multi-purpose reservoir system in the Keum river basin to demonstrate the efficiency of the improved formulation.

Maximizing of hydropower generation of Hwacheon Reservoir using HEC-ResPRM model

  • Karimizadeh, Keivan;Choi, Changwon;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.219-219
    • /
    • 2015
  • Hwacheon Reservoir is one of the reservoirs, which are located on the North Han River in South Korea. Construction of this reservoir was started in 1939 and completed in 1944. At the upstream of this reservoir there are Peace Reservoir, which is located in South Korea and Imnam Reservoir, which is located in North Korea. After construction of Imnam Reservoir, inflow regularity of Hwacheon Reservoir was changed and inflow of Hwacheon Reservoir also, was decreased. Peace Reservoir is used to decrease flood and damage at downstream due to unexpected release from Imnam Reservoir. This reservoir also, has a special role to regulate inflow of Hwacheon Reservoir. Hwacheon Reservoir has an important role for hydropower generation and flood control. Capacity and maximum discharge capacity of Hwacheon Reservoir are 1018 million $m^3$ and $9500m^3/s$, respectively. This reservoir has four generators to produce power and it is one of the important reservoirs for hydropower generation in South Korea. Due to the important role of this reservoir in generating power, maximization of hydropower generation of this reservoir is important and necessary. For this purpose, HEC-ResPRM model was applied in this study. HEC-ResPRM is a useful and applicable model to operate reservoirs and it gives optimal value for release to maximize power by minimizing penalty functions. In this study, after running the model, amount of release was optimized and hydropower generation was maximized by allocating more water for hydropower release instead of spillway release. Also, the model increased release in dry period from October to June to prevent high amount of release in flood season from July to September.

  • PDF

An Optimal Design of Gas Lift in Offshore Oil Reservoirs Considering Oil and Injected Gas Composition (해저 오일 저류층 내 오일 및 주입가스 조성에 따른 가스리프트 공법의 최적 설계)

  • Kim, Young-Min;Shin, Chang-Hoon;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.39-48
    • /
    • 2018
  • This study presents optimal design of gas lift considering composition of reservoir oil and injected gas which can affect gas lift performance in offshore oil reservoir. Reservoir simulation was conducted by using reservoir models which were built in accordance with API gravity of oil. The results of simulation reveal that oil production rate is considerably increased by gas lift when the reservoir productivity decrease. As a results of response curve analysis for gas lift using well models, gas injection rate to improve the production rate increases as the API gravity of oil decreases and the specific gravity of injected gas increases. The optimal design of gas lift was carried out using multiple lift valves. Consequently, gas lift can be operated at relatively low injection pressure because of decrease in injection depth in comparison to the single lift valve design. The improved oil production rates were analyzed by coupling between reservoir model and well model. As a results of the coupling, it is expected that natural gas injection in the heavy oil reservoir is the most efficient method for improving oil production by gas lift.

A Study on the Real time Reservoir Operation by Optimization Model considering Deviation Losses (편차손실을 고려한 최적화 모형에 의한 실시간 저수지 운영에 관한 연구)

  • 김채원;이종남
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.69-84
    • /
    • 1994
  • The aim of this paper is suggest how to control the real time reservoir operation for the optimal operation of reservoir during the draught and the rainy season. The realease and the storage lead to the achievement or the deviation losses, higher or lower than the target level. Considering this deviation as one of the losses, putting the penalty on the losses, the way of optimal reservoir operation is discussed in order to minimize the penalty losses. This study draw the deviation losses' curve depending on the operation objectie for the Daechung Dam, and apply the optimal operation to the Dam by the linear programing technique, using the slope of the deviation curve as the losses coefficience for the objective function. Conclusively, in this paper I can combine the opposing subjects -the release and the storage- as one objective function by the deviation curve, and also show how to decide the criterion relate to the real time reservoir operation by analysing to what extent and how easily the objectives can be achieved, subject to the inflows.

  • PDF

Reservoir Operation by Variable Restricted Water Level during Flood Period (홍수기중 가변제한수위에 의한 저수지 운영)

  • Sim, Myeong-Pil;Gwon, O-Ik;Lee, Hwan-Gi
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.217-228
    • /
    • 1995
  • For optimal reservoir operation during flood period, a general and systematic policy is suggested to make balance of the conflicting purposes between water conservation and flood control. The purpose of this study is to decide the restricted water level of the reservoir during flood period specially to meet water demand in non-flood period. The optimal policy is derived by reallocation of storage capacity through the application of variable restricted water level(VRWL) and minimum required water level(MRWL) for shorter intervals. This study also suggests water level dconditions to secure conservation storage capacity at the end of the flood period estimated by reservoir operation study. This paper illustrates an application of the Daecheong Dam and Chungju Dam respectively during flood and the results are reviewed.

  • PDF

The Study of Reservoir Operation for Drought Period (가뭄기간의 저수지 운영방안에 관한 연구)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1041-1048
    • /
    • 2004
  • In this study the results of optimal water supply analysis by operating constraints of reservoirs during drought period are as follows. During drought period, water supply reliability is possible about $97\~61{\%}$ by CASE 1-CASE 5. Water supply reliability is possible about $97.3{\%}$ in case of the Andong dam and $87.7{\%}$ in case of the Imha dam by CASE 3. Also, under the constraints of CASE 4, water supply reliability is possible about $87.5{\%}$ in case of the Andong dam and $73.3{\%}$ in case of the Imha dam. The reason what low of available water supply ratio is decreased inflow of Imha dam. When compare standard deviation of average storage with standard deviation of storage, stable storage can be secured during successive drought period. And it also can minimize shortage of water during drought. therefore, it is impossible that reservoir supply sufficient water but change of operating condition is better than pervious on that followed by full reservoir level. It is need that the study for optimal water supply during drought period has to be continued.