• Title/Summary/Keyword: Optimal replacement

Search Result 386, Processing Time 0.025 seconds

Optimal Replacement Policy of Degradation System with Loss Function (손실함수를 고려한 열화시스템의 최적교체정책)

  • 박종훈;이창훈
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 2001
  • Replacement policy of a degradation system is investigated by incorporating the loss function. Loss function is defined by the deviation of the value of quality characteristic from its target value, which determines the loss cost. Cost function is comprised of the inspection cost, replacement cost and loss cost. Two cost minimization problems are formulated : 1)determination of an optimal inspection period given the state for the replacement and 2)determination of an optimal state for replacement under fixed inspection period. Simulation analysis is performed to observe the variation of total cost with respect to the variation of the parameters of loss function and inspection cost, respectively As a result, parameters of loss function are seen to be the most sensitive to the total cost. On the contrary, inspection cost is observed to be insensitive. This study can be applied to the replacement policy of a degradation system which has to produce the quality critical product.

  • PDF

Age Replacement Policy for A System Considering Failure Characteristics of Components (부품(部品)의 고장특성(故障特性)를 고려한 시스템의 수명교환방침(壽命交換方針))

  • Jeong, Yeong-Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.2
    • /
    • pp.109-120
    • /
    • 1993
  • Most systems are composed of components which have different failure chracteristics. Since the failure characteristics of components is different, it is rational and reasonable to establish a maintenance model to be considered repair and replacement policies which are proper to failure characteristics of these components. This paper proposes the age replacement time for a system composed of components which have different failure characteristics. In this model, it is assumed that a system is composed of a critical failure component, a major failure component, minor failure component. If any failure occurs to critical component before its age replacement time, the system should be replaced. If any failure does not occur until its age replacement time, preventive replacement should be performed at age replacement time T. Major component is minimal repaired if any failure occurs during operation. Minor component should be replaced as soon as failure is found. This paper determines the optimal replacement time of the system which minimize, total maintenance cost and initial stock Quantity of minor component within this optimal replacement time. Numerical example illustrates these results.

  • PDF

Preventive maintenance policy following the expiration of replacement-repair warranty (교체-수리보증이 종료된 이후의 예방보전정책)

  • Jung, Ki-Mun
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.57-66
    • /
    • 2012
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of replacement-repair warranty. Under this preventive maintenance model, we derive the expressions for the expected cycle length, the expected total cost and the expected cost rate per unit time. Also, we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Optimal Replacement Policy for a Repairable System with Combination Warranty (혼합보증이 있는 수리 가능한 시스템에 대한 최적의 교체정책)

  • 정기문
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.1
    • /
    • pp.107-117
    • /
    • 2002
  • In this paper we present the optimal replacement policies following the expiration of combination warranty. We consider two types of combination warranty policies: renewing warranty and non-renewing warranty. The criterion used to determine the optimal replacement period is the expected cost rate per unit time from the user'perspective. The optimal maintenance period following the expiration of combination warranty is obtained. Some numerical examples are presented for illustrative purpose.

On Optimal Replacement Policies for a Deteriorating System (기능저하 시스템에서의 최적 교체 정책)

  • Ji Hwan Chan
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.94-105
    • /
    • 2002
  • In this paper, replacement problems for a deteriorating system are considered. In the system under consideration, the successive lifetimes after repair become shorter and shorter, while the consecutive repair times become longer and longer. More specifically, the lifetimes of the system form a nonhomogeneous Poisson process, whereas the consecutive repair times constitute a stochastically increasing geometric process. Optimal replacement policies for the long-run average cost rate and the steady state availability are considered. Also taking the cost and the availability into consideration at the same time, the properties of optimal policies under the Cost Priority Policy and the Availability Priority Policy are obtained.

A Bayesian Approach to Optimal Replacement Policy for a Repairable System with Warranty Period

  • Jung, Gi-Mun;Han, Sung-Sil
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This paper considers a Bayesian approach to determine an optimal replacement policy for a repairable system with warranty period. The mathematical formula of the expected cost rate per unit time is obtained for two cases : RFRW(renewing free-replacement warranty) and RPRW(renewing pro-rata warranty). When the failure time is Weibull distribution with uncertain parameters, a Bayesian approach is established to formally express and update the uncertain parameters for determining an optimal replacement policy. Some numerical examples are presented for illustrative purpose.

A Bayesian Approach to Replacement Policy Based on Cost and Downtime

  • Jung, Ki-Mun;Han, Sung-Sil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.743-752
    • /
    • 2006
  • This paper considers a Bayesian approach to replacement policy model with minimal repair. We use the criterion based on the expected cost and the expected downtime to determine the optimal replacement period. To do so, we obtain the expected cost rate per unit time and the expected downtime per unit time, respectively. When the failure time is Weibull distribution with uncertain parameters, a Bayesian approach is established to formally express and update the uncertain parameters for determining an optimal maintenance policy. Especially, the overall value function suggested by Jiagn and Ji(2002) is applied to obtain the optimal replacement period. The numerical examples are presented for illustrative purpose.

  • PDF

Optimal replacement policy following the expiration of payable RRNMW (유료 재생교체-비재생수리보증이 종료된 이후의 최적의 교체정책)

  • Jung, Ki-Mun
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.409-417
    • /
    • 2011
  • In this paper, we consider a replacement model following the expiration of warranty. In other words, this paper proposes the optimal replacement policy for a repairable system following the expiration of payable renewing replacement-non-renewing minimal repair warranty. The expected cost rate per unit time from the user's perspective is used to determine the optimality of the replacement policy. Thus, we derive the expressions for the expected cycle length and the expected total cost to obtain the expected cost rate per unit time. Finally, the numerical examples are presented for illustrative purpose.

Replacement Model after Extended Two-phase Warranty (연장된 이단계 보증 이후의 교체모형)

  • Jung, Ki Mun
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.197-204
    • /
    • 2021
  • Under the two-phase warranty, the warranty period is divided into two intervals, one of which is for renewing replacement warranty, and the other is for minimal repair warranty. Jung[13] discusses the two types of extended two-phase warranty models. In this paper, we suggest the replacement model after the extended two-phase warranty that has been proposed by Jung[13]. To determine the optimal replacement policy, we adopt the expected cost rate per unit time. So, the expressions for the total expected cost, the expected length of the cycle and the expected cost rate per unit time from the user's point of view are derived. Also, we discuss the optimal replacement policy and the uniqueness of the solution for the optimization. Furthermore, the numerical examples are provided to illustrate the proposed the replacement model.

Two Forms of Preventive Replacement Policy with Minimal Repair at Failure (수리사용 후 교환(交換)정책의 두 형태)

  • Park, Gyeong-Su;Gang, Ho-Seon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.4 no.1
    • /
    • pp.1-3
    • /
    • 1978
  • This paper presents a model for determining the optimal number of minimal repairs before replacement. The basic concept parallels the periodic replacement model with minimal repair at failure introduced by Barlow and Hunter, only difference being the replacement signalled by the number of previous minimal repairs performed on the unit. In the case of Weibull distribution, which is widely used as a general failure distribution, the optimal solution could be obtained numerically and seems more cost effective compared to the Barlow and Hunter's Policy II.

  • PDF