• Title/Summary/Keyword: Optimal production condition

Search Result 649, Processing Time 0.026 seconds

Enzymatic Hydrolysis Condition of Pretreated Corncob by Oxalic Acid to Improve Ethanol Production (에탄올 생산 향상을 위한 옥살산 전처리 옥수숫대의 효소가수분해 조건 탐색)

  • Lim, Woo-Seok;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.294-301
    • /
    • 2012
  • In this study, we investigated the features of bioethanol fermentation of corncob biomass after oxalic acid pretreatment as well as enzymatic hydrolysis. The enzymatic hydrolysis was performed with Accellerase 1000 and the highest yield of monomeric sugars ($64.8g/{\ell}$) was obtained at $50^{\circ}C$ and pH 4.5 for 96 hrs hydrolysis period. For the ethanol fermentation the monomeric sugars obtained from pretreated corncob were subjected to the biological treatment using Pichia stipitis CBS 6054. It was turned out that ethanol production from oxalic acid pretreated corncob was the most feasible at 10~14% of biomass loading as well as 15 FPU enzyme amount. Under these fermentation condition, the ethanol yield was approached to 0.47 after 24 hrs fermentation period, which was corresponded to 92.2% of conversion rate.

Mass-production of Eleutherococcus seoulensis Seedlings Through Somatic Embryogenesis (체세포배 형성을 통한 서울오갈피(Eleutherococcus seoulensis) 묘목의 대량생산)

  • Lee, Su-Gwang;Kang, Ho-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.719-725
    • /
    • 2009
  • This study was conducted to establish the optimal condition for acclimatization from somatic embryos of Eleutherococcus seoulensis. Torpedo-shaped embryos of Eleutherococcus seoulensis were cultured on 1/3 MS and WPM media supplemented with $GA_3$ (3.0, 5.0 mg/L) for 4 weeks. Plentlets were transferred to 1/2 SH solid medium with 1.0 mg/L $GA_3$ and 0.2% activated charcoal for shoot and root elongation and them elongated plantlets further developed on 1/2 SH medium for 4 weeks. Developed plantlets further elongated into well-shaped leaf and root system on 1/3 SH medium under ventilation condition for 4 weeks. Plantlets grew normally on 1/3 SH basal medium, were acclimated on various soil. Survival frequency of plantlets was influenced by soil type(peatmoss+perlite, perlite, soil on Nam mountain). The highest survival rate to soil was more than 70% when plantlets were 1/3 SH medium under ventilation condition in Nam mountain soil. These results indicate that the systematic procedure of plant production in Eleutherococcus seoulensis could be practically applicable for mass propagation.

Hydrogen Production for PEMFC Application in Plasma Reforming System (PEMFC용 플라즈마 개질 시스템의 수소 생산)

  • Yang, Yoon Cheol;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1002-1007
    • /
    • 2008
  • The purpose of this paper studied the optimal hydrogen production condition of plasma reforming system to operate the PEMFC. Plasma reforming reactor used with Ni catalyst reactor at the same time, So $H_2$ concentration increased. Also the WGS and PrOx reactor were designed to remove CO concentration under 10 ppm, because CO has effect on catalyst poisoning of PEMFC. The maximum $H_2$ production condition in plasma reforming system was S/C ratio 3.2, $CH_4$ flow rate 2.0 L/min, catalytic reactor temperature $700{\pm}5^{\circ}C$ and input power 900 W. At this time, the concentration of produced syngas was $H_2$ 70.2%, CO 7.5%, $CO_2$ 16.2%,$CH_4$ 1.8%. The hydrogen yield, hydrogen selectivity and $CH_4$ conversion rate were 56.8%, 38.1% and 92.2% respectively. The energy efficiency and specific energy requirement were 37.0%, 183.6 kJ/mol. In additional, The experiment of $CO_2/CH_4$ ratio proceeded. Also WGS reactor experiment was proceeding on optimum condition of plasma reactor and the exit concentration were $H_2$ 68%, CO 337 ppm, $CO_2$ 24.0%, $CH_4$ 2.2%, $C_2H_4$ 0.4%, $C_2H_6$ 4.1%. At this time, experiment result of PrOx reactor were $H_2$ 51.9%, CO 0%, $CO_2$ 17.3%.

Production of 2-O-\alpha-D- Glucopyranosl L-Ascorbic Acid by Cyclodextrin Glucanotransferase from Paenibacillus sp. JB-13 (Paenibacillus sp. JB-13의 Cyclodextrin glucanotransferase에 의한 2-O-\alpha-D- Glucopyranosl L-Ascorbic acid 생산)

  • Bae, Kyung-Mi;Kang, Yong;Jun, Hong-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.31-36
    • /
    • 2001
  • Paenibacillus sp. JB-13 producing the cyclodextrin glucan-otransferase(CGTase) [EC 2.4.1.19] that glucosylated ascorbic acid(AA) at the C-2 position was isolated form soil and the optimal conditions for the production of 2-O-$\alpha$-D- Glucopyranosl L-Ascorbic acid(AA-2G) with CGTase were investigated. CGTase produced AA-2G efficiently using dextrin as a substrate and AA as an aceptor. Several AA-2-oilgosaccharides(AA-2Gs) were also produced in this reaction mixture, and these were efficiently hydro-lyzed to AA-2G and glucose by the treatment with glucoamylase. The optimal temperature for AA-2G production was $37^{\circ}C$ and the optimal pH was around 6.5. CGTase also utilized $\alpha$-,$\beta$-,${\gamma}$-CDs, soluble starch, com statch, dia-static solution from rice and diastatic solution from malt as substrate, but not glucose. The reaction mixture for the maximal production of AA-2G was following; 15% total substrate concentration, 2,500 units/ml of CGTase and a mixing ration of 3:2(g of AA: g of dextrin). Under this condition, 56 mM of AA-2G ,which corresponded to 12.4% yield based on AA. was produced after incubation for 44 hrs at $37^{\circ}C$ and pH 6.5.

  • PDF

Production of Poly(Hydroxybutyric-Co-Hydroxyvaleric) Acid by Pseudomonas sp. HJ (Pseudomonas sp. HJ에 의한 Poly(Hydroxybutyric-Co-Hydroxyvaleric) Acid의 생산)

  • 손홍주;민관필이상준
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.349-356
    • /
    • 1995
  • To produce PHA(polyhydroxyalkanoic acid) from microbr, dozens of microorganism have been screened from sewage sludge. Selected a strain HJ out of 50 strains of PHA producing bacteria has a capability of accumulating large amounts of PHB/HV copolymer when grown in batch culture with a single carbon source (glucose) that was not generally considered as precursor of hydroxyvalerate monomer unit. The strain HJ was identified as the genus Pseudomonas with respect to morphological, cultural, and biochemical characteristics. The optimal temperature and pH for cell growth were $37^{\circ}C$ and 7.0. The optimal medium compositions for cell growth were glucose 1% as a carbon source, (NH4) 2SO4 0.2% as a nitrogen source, K2HPO4 0.3%, and KH2PO4 0.45%. TO investigate she optimal condition for PHA production two-step cultivation method was employed. PHA production was inducted by deficiency of NH4+, SO4-2, Mg+2. Besides carbon source, deficiency of all nutrients stimulated PHA productivity but deficiency of NH4+ stimulated the most HV monomer content. The highest PHA production was C/N molar ratio 95.2. Pseudomonas sp. HJ was also able to pyoduc PHB/HV copolymer when cultivated on alkane, alkanoate, alcohol as carbon sources. The contents of PHA and she proportions of hydroxyvalerate monomer units varied depending on the carbon sources. Especially Pseudomonas sp. HJ was able to incorporate hydroxyvalerate into PHB/HV to level as high as from 49 to 74 mol% when grown in a medium containing hexadecane and propionate. The purified PHA was identified PHB/HV copolymer by HNMR analysis.

  • PDF

Optimal Culture Conditions on the Tyrosinase Inhibitor Production by Actinomycetes F-97 (방선균 F-97에 의한 Tyrosinase 저해제 생성 최적 배양 조건)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Kim, Jin-O;Yi, Dong-Heui
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.798-804
    • /
    • 2007
  • A Actinomycetes F-97 producing tyrosinase inhibitor was isolated from soil samples. The optimum culture condition for 쇼rosinase inhibitor production was investigated and the results were as follows. The best carbon source for tyrosinase inhibitor production was shown as soluble starch, the optimum concentration was 3.0%. The best nitrogen source for tyrosinase inhibitor production was shown as peptone, the optimum concentration was 0.36%. As effect of metal ions on the production of tyrosinase inhibitor, K$_2$HPO$_4$ was shown the best and the optimum concentration was 0.1 mM. The optimum pH and temperature was shown 7.0 and 30${\circ}$C, respectively. And the highest tyrosinase inhibitor production was observed at 70hr cultivation under optimum conditions in jar fermentor scale.

Phylogentic Position, Pigment Content and Optimal Growth Condition of the Unicellular Hydrogen-Producing Cyanobacterial Strains from Korean Coasts (한국 연안산 단세포성 수소생산 남세균 종주들의 분류계통, 색소함량 및 최적성장 환경)

  • PARK, JONG-WOO;KIM, JU HEE;CHO, AE-RA;JUNG, YUN-DUK;KIM, PYOUNG JOONG;KIM, HYUNG-SEOP;YIH, WONHO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • To set up unicellular cyanobacterial strains with photo-biological $H_2$ production potential, live samples were repeatedly collected from 68 stations in the coastal zone of Korea for the four years since 2005. Among 77 cyanobacterial strains established six (KNU strains, CB-MAL002, 026, 031, 054, 055 and 058) were finally chosen as the excellent strains for $H_2$ production with $H_2$ accumulation over 0.15 mL $H_2\;mL^{-1}$ under general basic $H_2$ production conditions as well as positive $H_2$ production for more than 60 hr. To explore optimum procedures for higher $H_2$ production efficiency of the six cyanobacterial strains, the inter-strain differences in the growth rate under the gradients of water temperature and salinity were investigated. The maximum daily growth rates of the six strains ranged from 1.78 to 2.08, and all of them exhibited $N_2-fixation$ ability. Based on the similarity of the 16S rRNA sequences, all the test strains were quite close to Cyanothece sp. ATCC51142 (99%). The six strains, however, were grouped into separate clades from strain ATCC51142 in the molecular phylogeny diagram. Chlorophyll- a content was 3.4~7.8% of the total dried weight, and the phycoerythrin and phycocyanin contents were half of those in the Atlantic strain, Synechococcus sp. Miami BG03511. The growth of the six strains was significantly suppressed at temperatures above the optimal range, $30{\sim}35^{\circ}C$, to be nearly stopped at $40^{\circ}C$. The growth was not inhibited by high salinities of 30 psu salinity in all the strains while strain CB055 maintained its high growth rate at low salinities down to 15 psu. The euryhaline strains like CB055 might support massive biotechnological cultivation systems using natural basal seawater in temperate latitudes. base seawater. The biological and ecophysiological characteristics of the test strains may contribute to designing the optimal procedures for photo-biological $H_2$ production by unicellular cyanobacteria.

Cultural Conditions of Lactobacillus sp. GM7311 for the Production of Bacteriocin (Lactobacillus sp. GM7311에 의한 박테리오신의 생산 조건)

  • LEE Myung Suk;CHANG Dong Suck;KANG Ji-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.834-841
    • /
    • 1997
  • A lactic acid bacteria which showed antimicrobial activity was isolated from dairy products and identified as Lactobacillus sp. according to the morphological, physiological and biochemical properties, which was named Lactobacillus sp. SH 7311. The bacteriocin of Lactobacillus sp. GM 7311 showed a broad range of inhibitory spectrum against some gram positive and negative bacteria. Especially, Proteus mirabilis was highly sensitive to bacteriocin and used as indicator strain for further investigation. The optimal condition for the production of bacteriocin was showed on MRS broth at $37^{\circ}C$ and pM 6.0. Bacteriocin production of this strain cultured under optimal condition was increased late logarithmic phase to early stationary phase. This bacteriocin was fully active at the pH range $2.0\~5.0$, also was stable at $100^{\circ}C$ for 60 min. at pH 5.0, But about $40\%$ of bacteriocin activity was diminished by the treatment of acetone, ethanol, iso-butanol and ethyl ether during 2 hours at $4^{\circ}C$.

  • PDF

Carbon Dioxide Fixation and Light Source Effects of Spirulina platensis NIES 39 for LED Photobioreactor Design (Spirulina platensis NIES 39를 이용한 LED 광생물반응기에서의 이산화탄소 고정화와 광원 효과)

  • Kim, Ji-Youn;Joo, Hyun;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Optimal culture conditions of Spirulina platensis NIES 39 have been established using different types of light sources. Several types of photobioreactors were designed and the increase of biomass, the amount of $CO_2$, fixation and the production of chlorophyll content were studied. The result revealed that the input conditions of a 10 min period per 4 h at the condition of 5% $CO_2$ and 0.1 vvm, were excellent in the growth. The growth showing the maximum biomass accumulation is limited to 1.411 g/L when using the fluorescent bulb and the low powered surface mount device (SMD) type LEDs which were equipped-inside in the photobioreactor. However, the biomass exceeded up to 1.758 g/L level when a high powered red LED (color temperature : 12000 K) photobioreactor system was used. The $CO_2$ fixation speed and rate were increased. Although the total production of chlorophyll content undergoes a proportional increase in the biomass, the net content per dry cell weight (DCW) showed the higher production with a blue LED (color temperature : 7500 K) light than that of any other wavelengths. The carbon dioxide loss was marked as 0.15% of the inlet gas (5% $CO_2/Air$, v/v) at the maximum biomass culture condition.

Optimization of Culture Conditions for the Production of Diphtheria Toxin (디프테리아 toxin 생산을 위한 발효조건 최적화)

  • Cho, Min;Ryu, Yeon-Woo
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.241-247
    • /
    • 1999
  • Experimental studies were carried out to optimize the culture conditions of Corynebacterium diphtheriae for the production of diphtheria toxin. A new media which does not contain any meat digest products was selected. The main ingredient of new medium was enzymatic digests of casein known as NZ-Case. In fermenter experiments, the toxin production was increased with the increase of cell growth. The optimum initial pH of media, air flow rate and agitation speed were 7.0, 0.22, vvm and 400 rpm, respectively. The contents of iron and calcium-phosphate precipitate were important for maximal cell growth and toxin production. The optimum concentration of iron was 0.3 mg/L and calcium-phosphate precipitate could serve in gradual supply of iron to maintain the optimal culture condition which is required for enhanced yield of toxin production. In potency test, the potency of toxoid from fermentor culture was higher than that from static culture. When diphtheria toxin is produced by fermentor culture, it is possible to produce higher levels of toxin and better toxoid quality in terms of safety, yield, productivity and immunity.

  • PDF