• Title/Summary/Keyword: Optimal production

Search Result 3,424, Processing Time 0.033 seconds

Optimal Cycle Length of MAGNOX Reactor for Weapons-Grade Plutonium Production

  • Seongjin Jeong;Jinseok Han;Hyun Chul Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.219-226
    • /
    • 2024
  • Democratic People's Republic of Korea (DPRK) has produced weapon-grade plutonium in a graphite-moderated experimental reactor at the Yongbyon nuclear facilities. The amount of plutonium produced can be estimated using the Graphite Isotope Ratio Method (GIRM), even without considering specific operational histories. However, the result depends to some degree on the operational cycle length. Moreover, an optimal cycle length can maximize the number of nuclear weapons made from the plutonium produced. For conservatism, it should be assumed that the target reactor was operated with an optimal cycle length. This study investigated the optimal cycle length using which the Calder Hall MAGNOX reactor can achieve the maximum annual production of nuclear weapons. The results show that lower enrichment fuel produced a greater number of critical plutonium spheres with a shorter optimal cycle length. Specifically, depleted uranium (0.69wt%) produced 5.561 critical plutonium spheres annually with optimal cycle lengths of 251 effective full power days. This research is crucial for understanding DPRK's potential for nuclear weapon production and highlights the importance of reactor operational strategy in maximizing the production of weapons-grade plutonium in MAGNOX reactors.

A Study on the Optimal Algorithm to Find the Minimum Numbers of Sharing Resources in Semiconductor Production Systems (반도체 생산 시스템에서의 최소 공유 장비를 구하는 최적 알고리즘에 관한 연구)

  • 반장호;고인선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.61-61
    • /
    • 2000
  • Since FMS(Flexible Manufacturing System) such as semiconductor production systems have the characteristic that each device has to be commonly used in several stages, it is difficult to find an optimal solution. In this paper, we proposed the new algorithm which can get the optimal ratio of sharing resources. We will implement the proposed algorithm to semiconductor production systems. We introduce the optimal algorithm, which is modeled and analyzed by ExSpect, a petri net based simulation tool. When there exist conflicts of sharing resources, the scheduling method is adopted, which gives a priority to the most preceded process. The suggested algorithm can be used not only in semiconductor production systems but also in various FMS.

  • PDF

Costs and Returns in Raising Male Calves from Smallholder Dairy Farms for Beef Production

  • Buaphun, S.;Skunmun, P.;Prasanpanich, S.;Buathong, N.;Chantalakhana, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1461-1466
    • /
    • 2000
  • The use of the dairy male calf for beef production has been found to be economically unprofitable during the past due to high cost of feeds and relatively low beef price. However, due to current shortage of domestic beef supply and rising beef price, this research aimed to assess feeding methods and costs and returns in raising dairy male calves for beef production under changing economic conditions. Two diets were compared: calves on an optimal feeding level were given milk replacer for 44 d and a concentrate (with ad lib. hay) to 150 kg bodyweight that contained 16% crude protein; those given a sub-optimal diet, more appropriate for smallholder farms, received milk replacer for 30 d and 14% CP concentrate. Twelve pairs of dairy male calves (average age 32 days) of Holstein-Friesian high grades were used, each pair having similar influencing factors such as weight, age, and genotype. Each animal was kept in a separate feeding stall until reaching the final weight of 150 kg. The results from this experiment showed that the differences of traits concerning growth performance and feed efficiency of the animals raised under the two feeding regimes were statistically nonsignificant. The optimal group was just slightly better, but the cost of production of the sub-optimal group was 24 percent lower (4,667 vs. 6,144 baht per animal) and the cost difference was highly significant. The results from this investigation showed that beef production from dairy male calves can be economically viable when sub-optimal feeding method is used and market beef price is at current level.

Effect of Ethanol on the Production of Cellulose and Acetic Acid by Gluconacetobacter persimmonensis KJ145 (Gluconacetobacter persimmonensis KJ145를 이용한 Bacterial Cellulose 및 초산발효에 미치는 Ethanol의 영향)

  • 이오석;장세영;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.2
    • /
    • pp.181-184
    • /
    • 2003
  • We investigated the effect of ethanol on the production of cellulose and acetic acid fermentation by Gluconacetobacter persimmonensis KJ145. Results showed that bacterial cellulose productivity was highest when 2% ethyl alcohol was added to apple-juice medium. For acetic acid production, 7% ethyl alcohol was needed. Optimal concentration of ethyl alcohol was 5% for simultaneous production of bacterial cellulose and acetic acid. For simultaneous production of bacterial cellulose and acetic acid, optimal nitrogen source and optimal concentration were corn steep liquor and 15% (w/v), respectively Optimal culture time for simultaneous production of bacterial cellulose and acetic acid was 14 days. At the optimal condition, Cluconacetobacter persimmonenis KJ145 produced 7.55 g/L of bacterial cellulose (dry weight).

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

A Strategy for Optimal Production Management of Multi-Species Fisheries using a Portfolio Approach (포트폴리오 기법을 이용한 복수어종의 최적 생산관리 전략)

  • Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.1
    • /
    • pp.109-119
    • /
    • 2014
  • This study aimed to examine the applicability of a portfolio approach to the ecosystem-based fisheries management targeting the large purse seine fishery. Most fisheries are targeting multispecies and species are biologically and technically interacted each other. It enables a portfolio approach to be applied to find optimal production of each species through expected returns and risk analyses. Under specific assumptions on the harvest quota by species, efficient risk-return frontiers were generated and they showed a combination of optimal production level. Comparisons between portfolio and actual production provided a useful information for targeting strategy and management. Results also showed the possibility of effective multispecies fisheries management by imposing constraints on each species such as total allowable catch quotas.

Xylanase Production by Bacillus sp. A-6 Isolated from Rice Bran

  • Lee, Jun-Ho;Choi, Suk-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1856-1861
    • /
    • 2006
  • A Bacillus sp. A-6 strain that produced xylanase was isolated from rice bran. The optimal temperature and pH for xylanase activity of the culture supernatant of Bacillus sp. A-6 were 40$^{\circ}C$ and pH 7, respectively. The optimal temperature and pH for xylanase production in the xylan medium were 30$^{\circ}C$ and pH 9, respectively. The optimal concentrations of oat spelt xylan and peptone for xylanase production were 0.5% and 1.5%, respectively. The best nitrogen sources for xylanase production was beef extract, but xylanase production was also supported comparably by tryptone and peptone. The bacterial growth in the optimal xylan medium reached stationary growth phase after 12 h of incubation. The xylanase production in the culture supernatant increased dramatically during the initial 12 h exponential growth phase and then remained constant at 23.8-24.5 unit/ml during the stationary growth phase. The pH of the culture medium decreased from 8.8 to 6.7 during the exponential growth phase and subsequently increased to 8.1 during the stationary growth phase. Rice bran, sorghum bran, and wheat bran as well as oat spelt xylan induced xylanase production. The xylanase production was repressed when glucose was added to the xylan-containing medium.

Analysis of Dynamic Production Planning Model Using Linear Programming (선형계획을 이용한 동적 생산계획 모형의 분석)

  • Chang, Suk-Hwa
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.71-79
    • /
    • 1993
  • Dynamic production planning problems are to determine the optimal production times and production quantities of product for discrete finite periods. In previous many researches, the solutions for these problems have been developed through the algorithms using dynamic programming. The purpose of this research is to suggest the new algorithm using linear programming. This research is to determine optimal production quantities of product in each period to satisfy dynamic for discrete finite periods, minimizing the total of production cost and inventory holding cost. Cost functions are concave, and no backlogging for product is allowed. The new algorithm for capacity constrained problem is developed.

  • PDF

Optimal Culture Conditions for the Production of a Novel Extracellular Alkaline Lipase from Yarrowia lipolytica NRRL Y-2178

  • Lee, Geon-Ho;Bae, Jae-Han;Suh, Min-Jung;Kim, Hak-Ryul
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.46-51
    • /
    • 2007
  • Lipases are industrially useful versatile enzymes that catalyze numerous different reactions. Among lipases functioning under extreme conditions, alkaline lipase is useful in detergent industry. Lipase from yeast strain Yarrowia lipolytica NRRL Y-2178 was most active under alkaline condition, and initial medium pH for most lipase production was also alkaline [Lee et al., 2007, J Microbiol Biotechnol, 17(6)]. High lipase production was achieved using Y. lipolytica NRRL Y-2178. Optimal incubation time for lipase production at $25^{\circ}C$ was 72 h. Optimal temperature, when incubated for 72 h, was $27.5^{\circ}C$. Lipase production but not cell growth was very sensitive to concentrations of glucose and glycerol as efficient carbon sources, showing optimal concentrations of 1.0 and 1.5% (w/v), respectively. Lipase production was highly stimulated by $Ca^{2+},\;K^+,\;and\;Na^+$, but was inhibited by $Co^{2+},\;Cu^{2+},\;Mn^{2+},\;Na^+,\;and\;Fe^{2+}$. Maximum lipase production at 0.1 mM $Ca^{2+}$ for 72 h incubation at $27.5^{\circ}C$ was 649 units/mL.

Optimal Operation Scale of Hog Production for Farrow-to-Finish Farms

  • Huang, Y.H.;Lee, Y.P.;Yang, T.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1326-1330
    • /
    • 2001
  • This study analyzed the lowest production cost and the greatest profit to be obtained from marketing hogs to determine the optimal operation scale for family-owned farrow-to-finish farms. Data were collected from 39 farrow-to-finish farms with 500 to 5,000 inventories for two consecutive years, and treated with GLM and quadratic regression models using the REG procedure. Analysis results indicated that farms capable of marketing 2,933 and 3,286 hogs annually had the lowest production cost and the greatest profit, respectively. Further analysis attributed the lowest production cost or the highest return in farms with an optimal scale of 3,000 to a higher survival rate of the herd, as well as lower expenses in veterinary medicine, labor, utilities and fuel, transportation, and depreciation. A similar feed conversion efficiency was observed for all the farms studied. Obviously, the cost efficiencies were associated with the economy of the operation scale of hog production until it reached 3,000 hogs marketed annually for a family-run unit. Beyond the optimal scale of 3,000 hogs, good stockmanship was more difficult to maintain and the herd management deteriorated as increasing mortality confirms. It is conclude that, unless advanced management is applied, the operation scale should not expand beyond 3,000 hogs.