• Title/Summary/Keyword: Optimal modulation control

Search Result 84, Processing Time 0.025 seconds

Model Predictive Control for Shunt Active Power Filter in Synchronous Reference Frame

  • Al-Othman, A.K.;AlSharidah, M.E.;Ahmed, Nabil A.;Alajmi, Bader. N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.405-415
    • /
    • 2016
  • This paper presents a model predictive control for shunt active power filters in synchronous reference frame using space vector pulse-width modulation (SVPWM). The three phase load currents are transformed into synchronous rotating reference frame in order to reduce the order of the control system. The proposed current controller calculates reference current command for harmonic current components in synchronous frame. The fundamental load current components are transformed into dc components revealing only the harmonics. The predictive current controller will add robustness and fast compensation to generate commands to the SVPWM which minimizes switching frequency while maintaining fast harmonic compensation. By using the model predictive control, the optimal switching state to be applied to the next sampling time is selected. The filter current contains only the harmonic components, which are the reference compensating currents. In this method the supply current will be equal to the fundamental component of load current and a part of the current at fundamental frequency for losses of the inverter. Mathematical analysis and the feasibility of the suggested approach are verified through simulation results under steady state and transient conditions for non-linear load. The effectiveness of the proposed controller is confirmed through experimental validation.

A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction (직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템)

  • Kim, Nam-Hun;Kim, Min-Ho;Kim, Min-Huei;Kim, Dong-Hee;Hwang, Don-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

A Study on the Micro Stepping Drive to reduce Vibration of Step motor (스텝모터의 진동 저감을 위한 마이크로 스텝 구동에 관한 연구)

  • 신규범;이정우;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.448-455
    • /
    • 1996
  • In this study, to reduce vibration of step motor we use Microstep control. Microstep control of stepmotor is usually thought of as an extension of conventional stepmotor control technology. The essence ofmicro stepping is that we divide the full step of a stepmotor into a number of substep called microstep and cause the stepmotor to move through a substep per input pulse. In ideal case, bycontrolling the individual phase currents of a two-phase step motor sinusoidally we can get uniform torque and step angles. But due to the monlinear characteristics of the step motor, we need to compensate current waveform to improve the overall smoothness of the conventional micro stepping system. We implement digital Pulse Width Modulation(PWM) driver to drive step motor and microphone was used for detecting vibration. Driver enables speed change automatically byincreasing or decreasing micro stepping ratio which we call Automatic Switching on the Fly. To compensate the torque harmonics, Neural Networks is applied to the system and we foundcompensated optimal input current waveform. Finally we can get smooth motion of step motor in a wide range of motor speed.

  • PDF

Near-Five-Vector SVPWM Algorithm for Five-Phase Six-Leg Inverters under Unbalanced Load Conditions

  • Zheng, Ping;Wang, Pengfei;Sui, Yi;Tong, Chengde;Wu, Fan;Li, Tiecai
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.61-73
    • /
    • 2014
  • Multiphase machines are characterized by high power density, enhanced fault-tolerant capacity, and low torque pulsation. For a voltage source inverter supplied multiphase machine, the probability of load imbalances becomes greater and unwanted low-order stator voltage harmonics occur. This paper deals with the PWM control of multiphase inverters under unbalanced load conditions and it proposes a novel near-five-vector SVPWM algorithm based on the five-phase six-leg inverter. The proposed algorithm can output symmetrical phase voltages under unbalanced load conditions, which is not possible for the conventional SVPWM algorithms based on the five-phase five-leg inverters. The cause of extra harmonics in the phase voltages is analyzed, and an xy coordinate system orthogonal to the ${\alpha}{\beta}z$ coordinate system is introduced to eliminate low-order harmonics in the output phase voltages. Moreover, the digital implementation of the near-five-vector SVPWM algorithm is discussed, and the optimal approach with reduced complexity and low execution time is elaborated. A comparison of the proposed algorithm and other existing PWM algorithms is provided, and the pros and cons of the proposed algorithm are concluded. Simulation and experimental results are also given. It is shown that the proposed algorithm works well under unbalanced load conditions. However, its maximum modulation index is reduced by 5.15% in the linear modulation region, and its algorithm complexity and memory requirement increase. The basic principle in this paper can be easily extended to other inverters with different phase numbers.

Effects of Nonnutritive Sucking on Behavioral State in Preform Infants (비영양 흡철의 미숙아 행동상태에 대한 효과)

  • Shin Hee Sun
    • Child Health Nursing Research
    • /
    • v.4 no.2
    • /
    • pp.305-313
    • /
    • 1998
  • The purpose of study was to examine the effect of nonnutritive sucking(NNS) on behavioral state in preform infants. Fourteen infants (gestational age 28-35 weeks, M=31.86 ; birth weights 1095-2275g, M=1694g) admitted to NICU, serving as their controls were randomly administered 5 min of nonnutritive sucking and a control condition. Behavioral state was measured using the Anderson Behavioral State Scale(ABSS). Heart rates were obtained for each infant before and during NNS and bottle feeding. Data collecction was done by 3 experienced nurses in NICU 2 times a day for conseculive 4 days for each subject. Interrater reliability were .80-.90. The findings were as follows : 1. Preform infants averaged active restless states 58.93% in the prointervention phase and 27.32% in the NNS phase. Inactive awake states were 3.57% in the preintervention phase and 34.64% in the NNS phase. 2. There were significantly more positive changes to inactive awake states for the NNS intervention, Z=-2.35, p=.01. 3. There was no statistically significant difference in heart rate change between NNS intervention and control condition, z=-1.15, p=.24. 4. The rates of feeding success determined by finishing prescribed amount of milk by bottle feeding within 15 minutes were 83.94% in NNS intervention and 89.29% in control condition. The findings from this study confirmed that NNS is effective for behavioral state modulation and inducing optimal state for feeding in preform infant. The NNS intervention in nursing practice may help the transition of preform infants for nipple feeding.

  • PDF

Reference Frame Approach for Torque Ripple Minimization of BLDCM over Wide Speed Range Including Cogging Torque (코깅 토크를 포함한 광역 속도 영역상의 BLDCM의 토크 리플 최소화를 위한 기준 프레임 접근기법)

  • Park, Han-Woong;Cho, Sung-Bae;Won, Tae-Hyun;Kwon, Soon-Jae;Ham, Byung-Woon;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.33-36
    • /
    • 2001
  • Torque ripple control of brush less DC motor has been the main issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. Most methods for suppressing the torque ripples require Fourier series analysis and either the iterative or least mean square minimization. In this paper, the novel approach to achieve the ripple-tree torque control with maximum efficiency based on the d-q-0 reference frame is presented. The proposed method optimize the reference phase current waveforms including even the case of 3 phase unbalanced condition, and the motor winding currents are controlled to follow up the optimized current waveforms by delta modulation technique. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. The validity and practical applications of the proposed control scheme are verified through the simulations and experimental results.

  • PDF

Current Control of 3-Level PWM Power Inverter Using Neural Networks (신경회로망을 이용한 3 레벨 PWM 전력 인버터의 전류 제어)

  • Gu, S.W.;Choy, J.Y.;Choy, I.;Mok, H.S.;Suh, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.339-341
    • /
    • 1996
  • The objective of this paper is to present the design of a Neural Network(NH) based optimal pulse-width modulation(PWM) techniques for a three-level power inverter. Considering the importance of safety, power factor and harmonics of power inverters, two-level type and three-level type of power inverters using NNs are precisely investigated and compared in computer simulation.

  • PDF

Analysis and Design of a Three-Phase Synchronous Solid-state Var Compensator using Neutral-Point-Clamped Inverter (NPC 인버터를 이용한 3상 동기형 SVC의 해석 및 설계)

  • Lim, Su-Saeng;Lee, Eun-Woong;Kim, Sung-Heon;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.42-45
    • /
    • 1997
  • A synchronous solid-state var compensator(SSVC) system which employs a three-phase neutral-point-darned (NPC) inverter is presented and analyzed for high voltage and high power applications. The proposed SSVC system can compensate for leading and lagging displacement factor. An optimal pulse-width-modulation (PWM) is used as a means of reducing the size of reactive components. A equivalent model is obtained using DQ-transform, and the characteristic of open-loop system are archived from DC and AC analyzes. A $\alpha$ phase-shift control is suggested using a self-controlled dc bus.

  • PDF

A Study on the Parameter Optimization of Inverter for Induction Heating Cooking Appliance (유도가열 조리기기용 인버터 파라미터 최적화에 관한 연구)

  • Kang, Byung-Kwan;Lee, Se-Min;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • With the advent of power semiconductor switching devices, power electronics relating to high frequency electromagnetic eddy current based induction heating technology have become more suitable and acceptable. This paper presents high-frequency induction heating cooking appliance circuit based on the zero current switching-PWM single ended push-pull(ZCS-PWM SEPP) resonant inverter added AC-DC converter. This inverter uses pulse-width-modulation(PWM) control method with active auxiliary quasi-resonant lossless inductor snubbers and a switched capacitor. To improved the transient performance, the PI controller is applied for this system. For the systematic parameter optimization of the PI controller, the gradient-based optimization algorithm is applied. The performance of optimized parameters is evaluated using simulation and experimental test. These results show that the proposed systematic optimal tuning method improve the transient performances of this system.

Optimal Design Methodology of Zero-Voltage-Switching Full-Bridge Pulse Width Modulated Converter for Server Power Supplies Based on Self-driven Synchronous Rectifier Performance

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.121-132
    • /
    • 2016
  • In this paper, high-efficiency design methodology of a zero-voltage-switching full-bridge (ZVS-FB) pulse width modulation (PWM) converter for server-computer power supply is discussed based on self-driven synchronous rectifier (SR) performance. The design approach focuses on rectifier conduction loss on the secondary side because of high output current application. Various-number parallel-connected SRs are evaluated to reduce high conduction loss. For this approach, the reliability of gate control signals produced from a self-driver is analyzed in detail to determine whether the converter achieves high efficiency. A laboratory prototype that operates at 80 kHz and rated 1 kW/12 V is built for various-number parallel combination of SRs to verify the proposed theoretical analysis and evaluations. Measurement results show that the best efficiency of the converter is 95.16%.