• Title/Summary/Keyword: Optimal mixing ratio

Search Result 354, Processing Time 0.023 seconds

A Study on the Quality and Biological Characteristics of Moss Panel Utilizing Alumina Cement (알루미나 시멘트 활용 이끼 판넬의 품질 및 생물학적 특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Lee, Jae-Heun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • In this study, the quality characteristics of the mother material of panel were evaluated for the production of moss panel using alumina cement and biological characteristics and environmental impact characteristics of moss panel were evaluated. The ratio of W/B 10%, Vs/Vm 20% and foaming agent 0.5% were selected as the basic mixing ratio for the mother panel of moss panel through pretest and SAP was added to improve the moisture content of panel. The optimal mixing ratio of SAP was considered to be less than 0.5% considering the quality characteristics. Also, through the use of alumina cement, the pH of the panel could be lowered to 10~11. The panel was able to improve the surface roughness through the foaming agent, and it was confirmed that the SAP had an effect of improving the moisture content of the panel. For the environmental impact characteristics of the moss panel, the moss panel evaluated the carbon dioxide reduction performance and the fine dust cleaning performance.

Comparative Evaluation of Manufacturing Properties of Carbon Fiber Reinforced Thermoplastic Polymer (CFRTP) according to Nanofiller Type (나노필러 종류에 따른 열가소성 탄소 섬유강화 복합재료의 제작 물성 비교 평가)

  • Jun Ha Park;Soon Ho Yoon;Minkook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.186-189
    • /
    • 2024
  • This study compared and evaluated the mechanical properties of carbon fiber reinforced thermoplastic polymer (CFRTP) mixed with nanofillers. After mixing various nanofillers such as Multi-wall carbon nanotube (MWCNT), Silicon oxide, Core shell rubber, and Aramid nanofiber with Polyamide 6 (PA6) resin, this is used as a matrix to create a carbon fiber reinforced composite material (CFRP) was manufactured and its physical properties were measured. Depending on the type and mixing ratio of nanofiller, tensile strength, inter-laminar shear strength (ILSS), and Izod impact strength were measured. In terms of tensile strength and impact strength, the highest values were obtained when mixing core shell rubber, however the ILSS was optimal when mixing less than 1 wt.% of silicon oxide.

Optimization of mixing ratio of Polygala tenuifolia, Angelica dahurica and Elsholtzia splendens extracts for cosmetic material development (화장품 소재 개발을 위한 원지 (Polygala tenuifolia), 백지(Angelica dahurica) 및 꽃향유 (Elsholtzia splendens) 추출물의 혼합 비율 최적화)

  • Jung Seo A;Song, Ga Hyeon;Su In Park;Jung, Youn Ok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.993-1000
    • /
    • 2023
  • Recently, enviromentally friendly natural substances derived from plants have been attracting attention as cosmetic materials, and research on various physiological activities of natural substances is being actively conducted. This study investigated the antioxidant, anti-inflammatory, moisturizing, and antibacterial effects of three types of extracts of mixtures containing different mixing ratios, Polygala tenuifolia, Angelica dahurica, and Elsholtzia splendens, known to have various physiological activities. The mixing ratio is 7 conditions (M1, 1:1:1; M2, 0.5:1.5:1; M3, 1.5:0.5:1; M4, 0.1:0.95:0.95; M5, 0.5:0.5:2; M6, 0.95 :1.95:0.1; M7, 1.45:0.1:1.45), and the optimal mixing ratio was confirmed for use as a cosmetic material. DPPH and ABTS radical scavenging activities showed scavenging abilities of 75.37% and 99.19%, respectively, at 1,000 ㎍/mL of M6. At a concentration of 200 ㎍/mL of M6, it showed 50% of nitric oxide production inhibition compared to the lipopolysaccharide-treated that induced an inflammatory response. It was confirmed that M3 and M6 produced hyaluronic acid 1.47 and 1.49 times higher than the control at a concentration of 50 ㎍/mL, respectively. Through the disc diffiusion test, the clear zone was 9.75 mm at 8 ㎍/mL of M6, confirming the inhibition of growth of staplylococcus aureus strain. Based on the above results, it is believed that the mixed extract of Polygala tenuifolia, Angelica dahurica, and Elsholtzia splendens can be used as a functional natural material for cosmetics.

Unconfined Compressive Strength Characteristics of Eco-Friendly Stabilizers and Carbon Fiber Reinforced Soil (친환경고화재와 탄소섬유 보강토의 일축압축강도 특성)

  • Sewook Oh;Sunghwan Yang;Hongseok Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.8
    • /
    • pp.13-19
    • /
    • 2024
  • In this study, to reinforce the surface layer of weathered soil slopes where erosion and collapse of surface layer occur, compression strength tests were conducted by mixing carbon fiber and eco-friendly stabilizer (E.S.B.) To determine the optimal mixing ratio of E.S.B. and carbon fiber, E.S.B. was set at conditions of 10%, 20%, and 30%, and carbon fiber at 0.3%, 0.6%, 0.9%, and 1.2%. Additionally, to analyze the changes in compressive strength according to dry density and curing period, 85% and 95% of the maximum dry unit weight were applied, and curing periods were set to 3 days, 7 days, and 28 days. The standard strength for surface layer reinforcement of slopes is proposed as 4 MPa at 7 days and 6 MPa at 28 days according to ACI 230.1R-09 (2009). The compression test results showed that the unconfined compressive strength of E.S.B. reinforced soil met the standard strength at an E.S.B. mixing ratio of 10% or more for 95% compaction. Moreover, when carbon fiber was mixed with E.S.B. reinforced soil, a ductile fracture pattern was observed after the yield point due to compressive strength, indicating that the mixture could compensate for post-yield failure. It was analyzed that the maximum strength is exhibited at a carbon fiber mixing ratio of 0.6%. The unconfined compressive strength of carbon fiber reinforced soil increases by approximately 54-70% compared to the condition without carbon fiber.

The Effect of Soybean Oil and Waste Chicken Oil Mixing Ratio on Biodiesel Characteristics (대두유와 폐계유의 혼합비가 바이오디젤 특성에 미치는 영향)

  • Kwack, Jong Won;Kim, Tae Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.261-267
    • /
    • 2017
  • The interest in biodiesel is increasing rapidly. As a result, the price of vegetable oil that is used as a raw material for biodiesel is skyrocketing. Studies of biodiesel using animal waste as a means of solving these problems are underway. Biodiesel produced from animal fat contains considerably more saturated fatty acids than that produced from vegetable oil. In addition, it has a high cetane number and a high heating value. On the other hand, the fluidity decreases at lower temperatures because of the large amount of saturated fatty acids. For the biodiesel production, waste chicken oil and soybean oil were first purified. The raw materials were mixed at various ratios from 1:9 to 9:1. The methanol / oil molar ratio was also changed from 7 mol to 15 mol. The entire reaction time was one hour. The results showed that the optimal mixing ratio of soybean oil to waste chicken oil was 3:7, and the optimal methanol / oil molar ratio was 13. Moreover, the BD yield was 90.2%, the FAME content was 96.6%, and the LAME content was 4.1%. This result satisfied the Korea Industrial Standard (KSM2413).

Treatment of Artificial Sewage Using a Zeolite Column (제올라이트 칼럼에 의한 인공생활하수처리)

  • Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.178-188
    • /
    • 2002
  • Constructed wetlands typically cost less to build and operate, and require less energy than standard mechanical treatment technology but they have similar performance to centralized wastewater treatment plants. Therefore, they were constructed especially many in rural areas, where are small villages but not industries. Plantless column tests were performed to investigate the possibility on using zeolite as a filter medium of constructed wetland for the wastewater treatment. Removal efficiency was $COD_{Cr}$ 94.63% T-P 41.41% and $NH_4^+-N$ 99.75% at hydraulic load 314 $L/m^2{\cdot}d$ and filtering height 100 cm filled with a zeolite mixture. This zeolite mixture consisted of 1 : 1 by volume of zeolites in the diameter range of 0.5 to 1 mm and 1 to 3 mm. Accordingly, hydraulic load 314 $L/m^2{\cdot}d$ was considered as optimal. Three zeolite mixtures were used to determine the optimal mixing ratio by volume of a zeolite (A) in the diameter range of 0.5 to 1 mm to a zeolite (B) in the diameter range of 1 to 3 mm 1 : 3, 1 : 1 and only B in A to B by volume were tested at hydraulic load 314 $L/m^2{\cdot}d$ and filtering height 100 cm $COD_{Cr}$ removal efficiency was more than 89% at mixing ratios of 1 : 3 and 1 : 1 in A to B. That of T-P ranged 56.42 to 58.72% and, that of T-N and $NH_4^+-N$ was 87% and 99% regardless of mixing ratios of two zeolites. Removal efficiency was lower at the column filled with only B. Removal efficiency was better at Inter medium filled with mixing ratio 1 : 1 in A to B than with the other mixing ratios. Thus, it was found that the mixture of mixing ratio 1 : 1 in A to B was appropriate far Inter medium of constructed wetland Removal efficiency was higher in down-flow than in up-flow, and all contaminants were removed most in 20 cm filter height near feeding area.

The Characteristics of Manufacture Filter Media for Water Treatment Using Mixture Response with Ash and Food Waste (연소재 및 식품폐기물의 혼합 반응에 따른 수처리 여과재 제조 특성)

  • Park, Seung-Do;Lee, Won-Ho;Lee, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.5
    • /
    • pp.5-12
    • /
    • 2018
  • The porosity formation by the addition of additives was found to be the highest in the case of aluminum powder 3% and $Ca(OH)_2$ 2% under the condition that strength was maintained. The optimum mixing ratio of the binder was shown to be the most effective at (Ash+Food waste+clay):(water glass+colloidal silica) 7:3, and the temperature response is most economical and effective at $1,000^{\circ}C$. The optimal mixing ratio is the strength in 30% of ash, 30% of clay and 10% of food waste, which is the effective in non-point pollution water treatment. Filter media produced under optimal mixing conditions were analyzed as $SiO_2$ 65.8%, density $1.4g/cm^3$, porosity 25.6%, pH 9.8, and no hazardous substances were detected. As a result of the filtration of the water treatment, the mean concentration of the filtered SS was $14.06mg/{\ell}$, and the removal efficiency of SS was 90%, the recovery rate of the reversal is 97.1%. This enables the development of filter media considering economic efficiency and efficiency as well as the utilization of waste resources, enabling high value added of waste resources.

Manufacture technology of tofu shake added with red rice (홍국쌀을 첨가한 두부 셰이크의 제조기술)

  • Cho, Eun-Jeong;Lee, Sang-Soo;Kwon, Dong-Jin
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.942-948
    • /
    • 2017
  • To establish manufacturing technology of tofu shake added with red rice prepared with Monascus purpureus KCCM 60570, the quality characteristics of tofu shake added with M. purpureus KCCM 60570 were investigated. Also, we determined the optimal mixing ratios of raw materials including red rice for manufacturing tofu shake. Monacolin K and mold number of red rice were increased rapidly until $8^{th}$ day of incubation and then gradually increased during the 12 day manufacturing period. As the results, it was considered to be most suitable to prepare red rice for 8 days at $25^{\circ}C$, and inoculate 1% (w/w) M. purpureus KCCM 60570. Sensory evaluation of tofu shake added with red rice and tofu shake without red rice was not significantly different at p<0.05. In sensory evaluation, tofu shake added with 0.5% (w/w) red rice was higher in taste, texture, and overall acceptability than the other. Therefore, the optimal mixing ratio of red rice and tofu shake is 0.5% (w/w). These results suggest that the addition of red rice could improve the quality of tofu shake.

Experimental Study on Fundamental Quality Characteristics of Non-cement Repair Mortar Using High-volume Fly Ash Based on Potassium Magnesia Phosphate (마그네시아-인산칼륨 기반 하이볼륨 플라이애시 활용 무시멘트 보수 모르타르의 기초 품질 특성에 대한 실험적 연구)

  • Doo-Won Lee;Il-Young Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.152-161
    • /
    • 2024
  • This paper investigates the manufacturing and fundamental quality characteristics of potassium magnesia phosphate-based non-cement high-volume fly ash repair mortar. To derive the optimal mix for non-cement mortar, the manufacturing characteristics were evaluated based on the magnesia ratio, and the mortar manufacturing characteristics were assessed with the fly ash mixture. Additionally, the non-cement magnesia repair mortar was produced considering the effects of fly ash mixture and basalt fiber. The evaluation results determined the optimal mix of non-cement magnesia repair mortar, and the feasibility was examined through workability and fundamental quality assessments. The optimal magnesia ratio was found to be P:M 1:0.5, with W/B at 30 %. It was also confirmed that mixing FA and basalt fiber improves fiber dispersion and workability. Even with over 50 % FA mixture, the target strength was achieved within six hours, with a flow increase of up to 18 % and a flexural strength decrease of about 1-2 MPa.

Ingredient Mixing Ratio Optimization for the Preparation of Sulgidduk with Barley(Hordeum vulgare L.) Sprout Powder (어린 보릿가루를 첨가한 설기떡의 재료 혼합비의 최적화)

  • Park, Hae-Youn;Jang, Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.23 no.4 s.100
    • /
    • pp.551-560
    • /
    • 2007
  • This study was performed to determine the optimum ratio of ingredients in the Sulgidduk with barley(Hordeum vulgare L.) sprout powder. A mathematical analytical tool was employed for optimization of the typical ingredients. The canonical form and trace plot showed the affect of each ingredient in the mixture against the final product. Mixture design showed 14 experimental points, including 4 replicates for three independent variables. The three independent variables selected for the experiment were: water($15{\sim}22%$), barley sprout powder($1{\sim}4%$), and sugar($12{\sim}19%$). The optimum responses variables such as color values(L, a, and b), instrumental texture parameters(hardness, gumminess, and chewiness), and sensory characteristics(appearance, color, smell, taste, softness, moistness, and overall acceptability) were evaluated. The Hunter colorimetric L- and a-values of the Sulgidduk decreased with an increasing amount of barley sprout powder. As more barley sprout powder was added, a higher b-value resulted. Textural hardness, gumminess, and chewiness were lowered by the addition of barley sprout powder. The optimum formulation obtained by both numerical and graphical methods showed similar results. The representative optimal ingredient ratio commonly obtained by both methods were: 18.2% water, 2.0% barley sprout powder, and 14.8% sugar.