• Title/Summary/Keyword: Optimal machine selection

Search Result 171, Processing Time 0.027 seconds

Variable selection in the kernel Cox regression

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.795-801
    • /
    • 2011
  • In machine learning and statistics it is often the case that some variables are not important, while some variables are more important than others. We propose a novel algorithm for selecting such relevant variables in the kernel Cox regression. We employ the weighted version of ANOVA decomposition kernels to choose optimal subset of relevant variables in the kernel Cox regression. Experimental results are then presented which indicate the performance of the proposed method.

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

Machine load prediction for selecting machines in machining (절삭가공에서의 기계선정을 위한 기계부하 예측)

  • Choi H.R.;Kim J.K.;Rho H.M.;Lee H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.997-1000
    • /
    • 2005
  • Dynamic job shop environment requires not only more flexible capabilities of a CAPP system but higher utility of the generated process plans. In order to meet the requirements, this paper develops an algorithm that can select machines for the machining operations to be performed by predicting the machine loads. The developed algorithm is based on the multiple objective genetic algorithm that gives rise to a set of optimal solutions (in general, known as Pareto-optimal solutions). The objective shows a combination of the minimization of part movement and the maximization of machine utility balance. The algorithm is characterized by a new and efficient method for nondominated sorting, which can speed up the running time, as well as a method of two stages for genetic operations, which can maintain a diverse set of solutions. The performance of the algorithm is evaluated by comparing with another multiple objective genetic algorithm, called NSGA-II.

  • PDF

An optimal feature selection algorithm for the network intrusion detection system (네트워크 침입 탐지를 위한 최적 특징 선택 알고리즘)

  • Jung, Seung-Hyun;Moon, Jun-Geol;Kang, Seung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.342-345
    • /
    • 2014
  • Network intrusion detection system based on machine learning methods is quite dependent on the selected features in terms of accuracy and efficiency. Nevertheless, choosing the optimal combination of features from generally used features to detect network intrusion requires extensive computing resources. For instance, the number of possible feature combinations from given n features is $2^n-1$. In this paper, to tackle this problem we propose a optimal feature selection algorithm. Proposed algorithm is based on the local search algorithm, one of representative meta-heuristic algorithm for solving optimization problem. In addition, the accuracy of clusters which obtained using selected feature components and k-means clustering algorithm is adopted to evaluate a feature assembly. In order to estimate the performance of our proposed algorithm, comparing with a method where all features are used on NSL-KDD data set and multi-layer perceptron.

  • PDF

A Study on the Selection of Parameter for the Optimal Inductor Design using Fuzzy Theory (퍼지이론을 적용한 최적 인덕터 설계 파라미터 선정에 관한 연구)

  • 윤창선;배동관;김광헌;이재신;김병철
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.58-61
    • /
    • 1999
  • This paper describes the program of optimally choosing parameter in designing inductor, which applied by fuzzy theory, and verifies the reliability of program to use in design of power supply of electronic machine and information communication. It is available to find optimal value of complex and various parameter, such as core, winding, winding number, and air-gap, etc., needed on designing inductor. We expects to minimize time and cost of inductor design.

  • PDF

Study on Correlation-based Feature Selection in an Automatic Quality Inspection System using Support Vector Machine (SVM) (SVM 기반 자동 품질검사 시스템에서 상관분석 기반 데이터 선정 연구)

  • Song, Donghwan;Oh, Yeong Gwang;Kim, Namhun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.370-376
    • /
    • 2016
  • Manufacturing data analysis and its applications are getting a huge popularity in various industries. In spite of the fast advancement in the big data analysis technology, however, the manufacturing quality data monitored from the automated inspection system sometimes is not reliable enough due to the complex patterns of product quality. In this study, thus, we aim to define the level of trusty of an automated quality inspection system and improve the reliability of the quality inspection data. By correlation analysis and feature selection, this paper presents a method of improving the inspection accuracy and efficiency in an SVM-based automatic product quality inspection system using thermal image data in an auto part manufacturing case. The proposed method is implemented in the sealer dispensing process of the automobile manufacturing and verified by the analysis of the optimal feature selection from the quality analysis results.

Developing an Intrusion Detection Framework for High-Speed Big Data Networks: A Comprehensive Approach

  • Siddique, Kamran;Akhtar, Zahid;Khan, Muhammad Ashfaq;Jung, Yong-Hwan;Kim, Yangwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.4021-4037
    • /
    • 2018
  • In network intrusion detection research, two characteristics are generally considered vital to building efficient intrusion detection systems (IDSs): an optimal feature selection technique and robust classification schemes. However, the emergence of sophisticated network attacks and the advent of big data concepts in intrusion detection domains require two more significant aspects to be addressed: employing an appropriate big data computing framework and utilizing a contemporary dataset to deal with ongoing advancements. As such, we present a comprehensive approach to building an efficient IDS with the aim of strengthening academic anomaly detection research in real-world operational environments. The proposed system has the following four characteristics: (i) it performs optimal feature selection using information gain and branch-and-bound algorithms; (ii) it employs machine learning techniques for classification, namely, Logistic Regression, Naïve Bayes, and Random Forest; (iii) it introduces bulk synchronous parallel processing to handle the computational requirements of large-scale networks; and (iv) it utilizes a real-time contemporary dataset generated by the Information Security Centre of Excellence at the University of Brunswick (ISCX-UNB) to validate its efficacy. Experimental analysis shows the effectiveness of the proposed framework, which is able to achieve high accuracy, low computational cost, and reduced false alarms.

Selection of the Optimal Machining Condition for a High-hardness Resin using the 5-axis Machine (5축 가공기를 이용한 고경도 수지의 최적가공조건 선정)

  • Kim, Nam-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.29-34
    • /
    • 2012
  • This study describes the selection of optimum machining conditions for a high-hardness resin by using a large 5-axis machine. The experiments were conducted to examine the main factors that affect the surface roughness, such as the spindle speed, axial and radial depths of the cut, and pattern of the cutter path. To analyze the experiment results, the factor with the biggest impact on machining was determined using the smaller-the-better characteristic of the Taguchi method; the effectiveness of the experiment was then confirmed by verifying the selected optimum machining condition.

Selection of Optimal Stator Flux Reference of Stator Flux-Oriented Induction Machine Drive in Field Weakening Region (약계자영역에서 유도전동기의 고정자자속 기준 제어를 위한 최적 기준자속 선정방법)

  • Sin, Myeong-Ho;Hyeon, Dong-Seok;Jo, Sun-Bong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.494-499
    • /
    • 2000
  • In a conventional stator flux-oriented(SFO) induction machine drive system, the field weakening method is to vary flux reference in proportion to the inverse of the rotor speed. This paper investigates that maximum torque capability cannot be obtained in the conventional system and proposes a new selection method of flux reference to obtain maximum torque capability over the field weakening region by considering voltage, torque, and current limits.

  • PDF