• Title/Summary/Keyword: Optimal heat production

Search Result 136, Processing Time 0.025 seconds

Study on the Physiology of Optimal reproductive age in Korean Native Cattle (한우의 최적 번식적령기의 생리적 현상에 관한 연구)

  • Seong, H.H.;Lee, J.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.110-118
    • /
    • 2002
  • This study was conducted to investigate the physiology of optimal reproductive age in Hanwoo for protection to decrease of reproductivity and improvement of production of offspring. Thirty two cows were devided into 4 groups of treatments : T1(12 months of age and 0.5kg daily gain), T2(12 months of age and 0.8kg daily gain), T3(15 months of age and 0.5kg daily gain) and T4(18 months of age and 0.5kg daily gain). The days of the first heat of treated cows were 263.3±6.4 days and average weight was 181.1±11.3kg. The conception rates of first insemination were 25%(T1) and 75%(T4), and the number of insemination of T3 and T4(both 1.5) was lower than those of T1 and T2(2.3 and 2.4), respectively. With regard to estrus return after the first parturition, T1, T2, T3 and T4 showed 66.2,76.7, 62.4 and 68.5 days, respectively, indicating the average days of estrus return was 65.7. Plasma progesterone(P4) concentration was nearly the same during the observation periods of treated cows and P4 began to be detected after 12months. Only 5(15.6%) out of 32cows showed normal estrus cycle and ovulation before 12 months. During the peri-parturition period, P4 concentration was rapidly decreased and there was no detection of P4 from parturition to 40 days after milking. P4 would be released again on 45 day after parturition. The results imply that the optimal reproductive age of Hanwoo heifers would be around at the 14 months of age, 110cm height and 265kg weight.

A Study of Cleaning Technology for Zirconium Scrap Recycling in the Nuclear Industry (원자력산업에서 지르코늄 스크랩 재활용을 위한 세정기술에 관한 연구)

  • Lee, Ji-Eun;Cho, Nam-Chan;An, Chang-Mo;Noh, Jae-Soo;Moon, Jong-Han
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.264-271
    • /
    • 2013
  • In this study, we optimized the removal condition of contaminants attached on the scrap surface to recycle the scrap generated from the Zr alloy tube manufacturing process back to the nuclear grade. The main contaminant is remnant of watersoluble cooling lubricant that is used in the pilgering manufacture during the tube production, and it is assumed to be compressed and carbonized on the surface of tube. Zirlo alloy tube of ${\phi}9.50mm$, which has high occurrence frequency of scrap, was selected as the object to be cleaned, and cleaning abilities of reagents were evaluated by measuring the characteristics of contaminants remained and by analyzing the surface of the tube after cleaning process. For evaluation of each cleaning agent, we selected two types of sodium hydroxide series and three types of potassium hydroxide series. Furthermore, to confirm dependence on tempe-rature and ultrasonic intensities, cleaning at the room temperature, $40^{\circ}C$, and $60^{\circ}C$ was conducted, and results showed that higher the cleaning temperature and higher the ultrasonic intensity, better the cleaning effect. As a result of the bare-eye inspection, while the use of sodium hydroxide provided satisfactory condition on the tube surface, the use of potassium hydroxide series provided satisfactory condition on the tube surface only when the ultrasonic intensity was over 120 W. In the cleaning effect analysis using the gravimetric method, cleaning efficiency of sodium hydroxide series was as high as 97.6% ($60^{\circ}C$, 120 W), but since the tube surface condition was poor after the use of potassium hydroxide, the gravimetric method was not appropriate. In the analytical result of surface contaminants on the tube surface, C, O, Ca, and Zr were detected, and mainly C and O dominated the proportion of contaminants. It was also found that the degree of cleaning on the tube affected the componential ratio of C and O; if the degree of cleaning is high, or if cleaning is well-conducted, the proportion of C is decreased, and the proportion of O is increased. Based on these results, optimal cleaning for application in the industry can be expected by categorizing cleaning process into three steps of Alkali cleaning, Rinsing, and Drying and by adjusting cleaning parameters in each step.

Efficiency of microspore embryogenesis in Brassica rapa using different genotypes and culture conditions (배추 유전자원의 소포자 유래 배 발생 효율에 미치는 배양 조건 구명)

  • Seo, Mi-Suk;Sohn, Seong-Han;Park, Beom-Seok;Ko, Ho-Cheol;Jin, Mina
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.116-122
    • /
    • 2014
  • Total of fifty accessions of Brassica rapa with various morphological characteristics were used for production of double haploid plants though microspore culture in Brassica rapa. Among them, only 30 accessions induced embryos from microspores. The highest efficiency of embryo induction of 1.194 per bud was obtained from IT135449 of turnip type, while 3 accessions of sarson (winter oil) type did not generate embryo. The effect of heat shock periods for embryogenesis was also investigated with 4 accessions (IT135449; Turnip type, IT199710; Chinese cabbage type, IT212886; Pak choi type, IT218043; Summer oil type). The high productions of embryos were observed in IT135449, IT199710 and IT212886 when microspores were pre-cultured to $32^{\circ}C$ for 2 days. In IT218043, high embryogenesis was observed at the 3 days of heat shock treatment. The optimal condition of shoot regeneration for IT199710 was observed in MS medium supplemented with NAA $0.5mg{\cdot}L^{-1}$ and BAP $1mg{\cdot}L^{-1}$. In contrast, the IT135449 and IT212886 were observed high regeneration frequency in MS medium without plant growth regulators. All the plantlets regenerated from microspore-derived embryos have been successfully transplanted to soil, and bud self-pollinated seeds were produced from doubled haploid plants. This indicated that double-haploid genotype was likely generated naturally during embryogenesis process.

Cloning and Expression of Thermostable $\beta$-Glycosidase Gene from Thermus filiformis Wai33 A1 in Escherichia coli and Enzyme Characterization

  • Kang, Sang-Kee;Cho, Kwang-Keun;Ahn, Jong-Kun;Kang, Seung-Ha;Han, Kyung-Ho;Lee, Hong-Gu;Choi, Yun-Jaie
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.584-592
    • /
    • 2004
  • A thermostable $\beta$-glycosidase gene, tfi $\beta$-gly, was cloned from the genomic library of Thermus filiformis Wai33 A1. ifi $\beta$-gly consists of 1,296 bp nucleotide sequence and encodes a polypeptide of 431 amino acids. It shares a strong amino acid sequence similarity with the $\beta$-glycosidases from other Thermus spp. belonging to the glycosyl hydrolase family 1. In the present study, the enzyme was overexpressed in Escherichia coli BL21 (DE3) using the pET21b(+) vector system. The recombinant enzyme was purified to homogeneity by heat treatment and a $Ni^{2+}$-affinity chromatography. Polyacrylamide gel electrophoresis (PAGE) showed that the recombinant Tfi $\beta$-glycosidase was a monomeric form with molecular mass of 49 kDa. The temperature and pH range for optimal activity of the purified enzyme were 80- $90^{\circ}C$ and 5.0-6.0, respectively. Ninety-three percent of the enzyme activity was remained at $70^{\circ}C$ after 12 h, and its half-life at $80^{\circ}C$ was 6 h, indicating that Tfi $\beta$-glycosidase is highly thermostable. Based on its K_m$, or $K_{cat}K_m$, ratio, Tfi $\beta$-glycosidase appeared to have higher affinity for $\beta$-D-glucoside than for $\beta$-D-galactoside, however, $K_{cat} for \beta$-D-galactoside was much higher than that for $\beta$-D-glucoside. The activity for lactose hydrolysis was proportionally increased at $70^{\circ}C$ and pH 7.0 without substrate inhibition until reaching 250 mM lactose concentration. The specific activity of Tfi TEX>$\beta$-glycosidase on 138 mM lactose at $70{^\circ}C$ and pH 7.0 was 134.9 U/mg. Consequently, this newly cloned enzyme appears to have a valuable advantage of conducting biotechnological processes at elevated temperature during milk pasteurization in the production of low-lactose milk.

Effects of Ginseng Saponins in Energy Metabolism, Memory, and Anti-neurotoxicity

  • Wang Lawrence C.H.;Lee Tze-fun
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.55-65
    • /
    • 2002
  • Ginseng has been used as a key constituent in traditional medicine prescriptions for centuries. Other than its well-known anti-stress and adaptogenic properties, ginseng has also been shown to be very effective in treating age-related deterioration in metabolic and memory functions. Although it is generally believed that the saponin (GS) fraction of the ginseng root accounts for the bioactivity of ginseng, a direct demonstration on which ginsenoside does what is still generally lacking. In the past decade, our laboratory has endeavored to identify the active GS components involved in energy metabolism, memory, and anti-neurotoxicity. To examine the ergogenic effects of GS in enhancing aerobic capacity, rats were subjected to either severe cold ($40^{\circ}C$ under helium-oxygen, two hours) or exercise workload $(70\%\;VO_{2}max,$ to exhaustion). Acute systemic injection (i.p.) of ginseng GS (5-20 mg/kg) significantly elevated both the total and maximum heat production in rats and improved their cold tolerance. However, pretreating the animal with the optimal dose (10 mg/kg) of GS devoid of $Rg_1\;and\;Rb_1$ failed to elicit any beneficial effects in improving cold tolerance. This indicates that either $Rb_1\;and/or\;Rg_1$ may be essential in exemplifying the thermogenic effect of GS. Further studies showed that only pretreating the animals with $Rb_1(2.5-5\;mg/kg),\;but\;not\;Rg_l,$ resulted in an increase in thermogenesis and cold tolerance. In contrast to the acute effect of GS on cold tolerance, enhancement of exercise performance in rats was only observed after chronic treatment (4 days). Further, we were able to demonstrate that both $Rb_1\;and\;Rg_1$ are effective in enhancing aerobic endurance by exercise. To illustrate the beneficial effects of GS in learning and memory, a passive avoidance paradigm (shock prod) was used. Our results indicated that the scopolamineinduced amnesia can be significantly reversed by chronically treating (4 days) the rats with either $Rb_1\;or\;Rg_1$ (1.25 - 2.5 mg/kg). To further examine its underlying mechanisms, the effects of various GS on ${\beta}-amyloid-modulated$ acetylcholine (ACh) release from the hippocampal slices were examined. It was found that inclusion of $Rb_1$ (0.1 ${\mu}M$), but not $Rg_1$, can attenuate ${\beta}-amyloid-suppressed$ ACh release from the hippocampal slices. Our results demonstrated that $Rb_1\;and\;Rg_1$ are the key components involved in various beneficial effects of GS but they may elicit their effects through different mechanisms.

  • PDF

Development of a Method for Producing Liposome Ascorbic acid with Increased Bio-absorption (생체 흡수율이 증가된 liposomal ascorbic acid 제조법 개발)

  • Cha, Ji Hyun;Woo, Young Min;Jo, Eun Sol;Cha, Jae Young;Lee, Sang Hyeon;Lee, Keun Woo;Kim, Andre
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.232-240
    • /
    • 2022
  • Various methods are known for preparing liposomes, the simplest being the Bangham method which has been widely used. Although it is possible to produce liposomes effectively on a small experimental level with this approach, large-scale production cannot be easily performed due to difficulties in removing the organic solvent and the size of the reactor required to form the lipid film. On the other hand, emulsion can mass produce tons of liposomes with uniform particles but has the disadvantage of a significantly low capture rate. This study therefore developed an optimal liposome processing method using heat with improved capture rate and stability, and bio-absorption experiments were performed by oral administration to SD rat alongside capture rate, particle size, and zeta potential. Through the heating method, a small and uniform liposome of about 214 nm was formed and the capture rate was 38.67%, confirming that the liposome prepared by heating has a higher capture rate than the 26.46% achieved through emulsion. Comparing blood concentrations, it showed a 1.5 to 2 fold increase in all groups, gradually decreasing until 4-12 hr. The highest blood concentration of ascorbic acid powder was about 12.017 ㎍/ml, the emulsion liposome 13.871 ㎍/ml, and the heating liposome 16.322 ㎍/ml, thereby showing an improved absorption rate.

Application and Performance Evaluation of Photodiode-Based Planck Thermometry (PDPT) in Laser-Based Packaging Processes (레이저 기반 패키징 공정에서 광 다이오드 기반 플랑크 온도 측정법(PDPT)의 적용 및 성능 평가)

  • Chanwoong Wi;Junwon Lee;Jaehyung Woo;Hakyung Jeong;Jihoon Jeong;Seunghwoi Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2024
  • With the increasing use of transparent displays and flexible devices, polymer substrates offering excellent flexibility and strength are in demand. Since polymers are sensitive to heat, precise temperature control during the process is necessary. The study proposes a temperature measurement system for the laser processing area within the polymer base, aiming to address the drawbacks of using these polymer bases in laser-based selective processing technology. It presents the possibility of optimizing the process conditions of the polymer substrate through local temperature change measurements in the laser processing area. We developed and implemented the PDPT (Photodiode-based Planck Thermometry) to measure temperature in the laser-processing area. PDPT is a non-destructive, contact-free system capable of real-time measurement of local temperature increases. We monitored the temperature fluctuations during the laser processing of the polymer substrate. The study shows that the proposed laser-based temperature measurement technology can measure real-time temperature during laser processing, facilitating optimal production conditions. Furthermore, we anticipate the application of this technology in various laser-based processes, including essential micro-laser processing and 3D printing.

Characterization and Purification of the Bacteriocin Produced by Bacillus licheniformis Isolated from Soybean Sauce (간장에서 분리한 Bacillus licheniformis가 생산하는 박테리오신의 특성 및 정제)

  • Jung, Sung-Sub;Choi, Jung-I;Joo, Woo-Hong;Suh, Hyun-Hyo;Na, Ae-Sil;Cho, Yong-Kweon;Moon, Ja-Young;Ha, Kwon-Chul;Paik, Do-Hyeon;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • A bacteriocin-producing bacterium identified as Bacillus licheniformis was isolated from soybean sauce. Antibacterial activity was confirmed by paper disc diffusion method, using Micrococcus luteus as a test organism. The bacteriocin also showed antibacterial activities against Bacillus sphaericus, Lactobacillus bulgaricus, Lactobacillus planiarum, Paenibacillus polymyxa, and Pediococcus dextrinicus. Optimal culture conditions for the production of bacteriocin was attained by growing the cells in an MRS medium at a pH of 6.5~ 7.0 and a temperature of 37$^\circ$C for 36$\sim$48 hr. Solvents such as chloroform, ethanol, acetone, and acetonitrile had little effect on bacteriocin activity. However, about 50% of bacteriocin activity diminished with treatment of methanol and isopropanol at the final concentration of 50% at 25$^\circ$C for 1 hr. It was stable against a pH variation range from 3.0 and 7.0, but the activity reduced to 50% at a pH range from 9.0 to 11.0. It's activity was not affected by heat treatment at 100$^\circ$C for 30 min and 50% of activity was retained after heat treatment at 100$^\circ$C for 60 min, showing high thermostability. The bacteriocin was purified to a homogeneity through ammonium sulfate precipitation, SP-Sepharose ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (HPLC). The entire purification protocol led to a 75-fold increase in specific activity and a 13.5% yield of bacteriocin activity. The molecular weight of purified bacteriocin was estimated to be about 2.5 kDa by tricine-SDS-PAGE.

Study on the Mechanical Stability of Red Mud Catalysts for HFC-134a Hydrolysis Reaction (HFC-134a 가수분해를 위한 Red mud 촉매 기계적 안정성 향상에 관한 연구)

  • In-Heon Kwak;Eun-Han Lee;Sung-Chan Nam;Jung-Bae Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.134-144
    • /
    • 2024
  • In this study, the mechanical stability of red mud was improved for its commercial use as a catalyst to effectively decompose HFC-134a, one of the seven major greenhouse gases. Red mud is an industrial waste discharged from aluminum production, but it can be used for the decomposition of HFC-134a. Red mud can be manufactured into a catalyst via the crushing-preparative-compression molding-firing process, and it is possible to improve the catalyst performance and secure mechanical stability through calcination. In order to determine the optimal heat treatment conditions, pellet-shaped compressed red mud samples were calcined at 300, 600, 800 ℃ using a muffle furnace for 5 hours. The mechanical stability was confirmed by the weight loss rate before and after ultra-sonication after the catalyst was immersed in distilled water. The catalyst calcined at 800 ℃ (RM 800) was found to have the best mechanical stability as well as the most catalytic activity. The catalyst performance and durability tests that were performed for 100 hours using the RM 800 catalyst showed thatmore than 99% of 1 mol% HFC-134a was degraded at 650 ℃, and no degradation in catalytic activity was observed. XRD analysis showed tri-calcium aluminate and gehlenite crystalline phases, which enhance mechanical strength and catalytic activity due to the interaction of Ca, Si, and Al after heat treatment at 800 ℃. SEM/EDS analysis of the durability tested catalysts showed no losses in active substances or shape changes due to HFC-134a abasement. Through this research, it is expected that red mud can be commercialized as a catalyst for waste refrigerant treatment due to its high economic feasibility, high decomposition efficiency and mechanical stability.

Study on the Optimum Age of Physiological Reproduction in Korean Native Cattle (한우의 생리적인 최적 번식적령기에 관한 연구)

  • 성환후;이연근;최선호;장원경;이장형
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.2
    • /
    • pp.193-199
    • /
    • 2002
  • This study was conducted to investigate the optimal physiologic mating time in Hanwoo for protection to decrease of reproductivity and improvement of production of offspring. We observed 32 cows that were devide into 4 parts of treatment : T1(12 months of age and 0.5kg daily gain), T2(12 months of age and 0.8kg daily gain), T3(15 months of age and 0.5kg daily gain) and T4(18 months and 0.5kg daily gain). The first heat of treated cows was 263.3$\pm$6.4 days and average weight was 181.1$\pm$11.3kg. It was revealed the conception rates of first insemination were 25%(T1), 75%(T4) and number of insemination of T3 and T4(both 1.5) was lower than T1 and T2(2.3 and 2.4). In return of estrus after heifer's first parturition, they(T1, T2, T3 and T4) showed 66.2 days, 76.7 days, 62.4 days and 68.5 days respectively and the average was 65.7 days. Plasma progesterone(P4) concentration was nearly the same during the observation periods of treated cows and P4 was released just after 12 months. Only 5 cows (15.6%) in 32 were showed normal estrus cycle and ovulation before 12 months. Before and after parturition, P4 concentration was decreased fastly and then there was no detection of P4 from after parturition to 40 days after milking. P4 would be released again on 45 day after parturition. The results were summarized as that the optimal mating time of Hanwoo heifers was decided by the 14 months of age, 110 cm height and 265kg weight.