• Title/Summary/Keyword: Optimal heat production

Search Result 136, Processing Time 0.027 seconds

Evaluation of high nutrient diets on litter performance of heat-stressed lactating sows

  • Choi, Yohan;Hosseindoust, Abdolreza;Shim, YoungHo;Kim, Minju;Kumar, Alip;Oh, Seungmin;Kim, YoungHwa;Chae, Byung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1598-1604
    • /
    • 2017
  • Objective: The present study investigated the litter performance of multiparous sows fed 3% and 6% densified diets at farrowing to weaning during summer with mean maximum room temperature of $30.5^{\circ}C$. Methods: A total of 60 crossbred multiparous sows were allotted to one of three treatments based on body weight according to a completely randomized design. Three different nutrient levels based on NRC were applied as standard diet (ST; metabolizable energy, 3,300 kcal/kg), high nutrient level 1 (HE1; ST+3% higher energy and 16.59% protein) and high nutrient level 2 (HE2; ST+6% higher energy and 17.04% protein). Results: There was no variation in the body weight change. However, backfat thickness change tended to reduce in HE1 in comparison to ST treatment. Dietary treatments had no effects on feed intake, daily energy intake and weaning-to-estrus interval in lactating sows. Litter size, litter weight at weaning and average daily gain of piglets were significantly greater in sows in HE1 compared with ST, however, no difference was observed between HE2 and ST. Increasing the nutrient levels had no effects on the blood urea nitrogen, glucose, triglyceride, and creatinine at post-farrowing and weaning time. The concentration of follicle stimulating hormone, cortisol and insulin were not affected by dietary treatments either in post-farrowing or weaning time. The concentration of blood luteinizing hormone of sows in ST treatment was numerically less than sows in HE2 treatment at weaning. Milk and colostrum compositions such as protein, fat and lactose were not affected by the treatments. Conclusion: An energy level of 3,400 kcal/kg (14.23 MJ/kg) with 166 g/kg crude protein is suggested as the optimal level of dietary nutrients for heat stressed lactating sows with significant beneficial effects on litter size.

Effect of Heat-epimerized-catechin-mixture Rich in Gallocatechin-3-gallate on Skin Barrier Recovery (갈로카테킨-3-갈레이트가 풍부한 열전환 카테킨의 피부 장벽 회복에 대한 개선 효과)

  • Kim, Jeong-Kee;Shin, Hyun-Jung;Lee, Sang-Min;Jeon, Hee-Young;Lee, Sang-Jun;Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.93-99
    • /
    • 2008
  • Until now, (-)-epigallocatechin-3-gallate(EGCG) is known as the most powerful antioxidant among green tea catechins having many beneficial effects on human skin. Considering that the content of catechins is variable according to many conditions such as solvent, temperature and pressure, we prepared the heat-epimerized-EGCG-mixture (HE-EGCG-mix) containing high content of gallocatechin-3-gallate(GCG) by epimerization during autoclaving process and found out its optimal condition for maximizing conversion from EGCG to GCG. To investigate the effects of EGCG and HE-EGCG-mix on skin barrier function, we performed in vivo experiments with hairless mice. We found that HE-EGCG-mix has more potent stimulating activity than EGCG for the production of involucrin 7(INV7) and for recovery of barrier function in SKH-1 mice. Also, we found that GCG stimulates $PPAR-{\alpha}$ transactivation more effectively than EGCG in vitro by transient transfection assay for $PPAR-{\alpha}$ activation activity. These imply that HE-EGCG-mix consisting of high content of GCG should stimulate more efficiently recovery of skin barrier through PPAR-mediated-kerationocyte differentiation than EGCG. In conclusion, our study may provide a possibility that GCG, the C-2 epimer of EGCG, could be a potentially effective agent for development of new cosmetics or health foods for recovery of skin barrier.

Optimization Study for the Production of 6-Shogaol-rich Ginger (Zingiber officinale Roscoe) under Conditions of Mild Pressure and High Temperature (가압조건에서 생강 유래 6-shogaol 변환을 위한 가열 조건 최적화)

  • Park, Ho-Young;Ha, Sang Keun;Choi, Jiwon;Choi, Hee-Don;Kim, Yoonsook;Park, Yongkon
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.588-592
    • /
    • 2014
  • Under optimized condition mild pressure in combination with specific temperature for heat treatment transform the 6-gingerol into 6-shogaol. The purpose of this study was to optimize the conditions used for heat treatment under pressure for increasing 6-shogaol content in ginger (Zingiber officinale Roscoe). A central composite experimental design was used to evaluate the effects of application temperature ($70-130^{\circ}C$) and temperature-holding time (95-265 min) on the transformation of 6-shogaol. The experimental values were shown to be in significantly good agreement with the predicted values (adjusted determination coefficient, $R^2{_{Adj}}=0.9857$). 6-Shogaol content increased as the application temperature and temperature-holding time increased. By analyzing the response surface plots, the optimum conditions of heat treatment (temperature and time) for increasing 6-shogaol content were found to be $127^{\circ}C$ and 109 min, respectively. Under these optimal conditions, the predicted 6-shogaol content was 3.98 mg/g dried ginger. The adequacy of the model equation for predicting the optimum response values was effectively verified by the validation data.

Microwave Sintering of Silver Thick Film on Glass Substrate (유리기판 위에 Ag 후막의 마이크로웨이브 소결)

  • Hwang, Seong-Jin;Veronesi, Paolo;Leonelli, Cristina;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.22-22
    • /
    • 2009
  • The silver thick film has been used in many industries such as display, chip, solar cell, automobile, and decoration with conventional heating. The silver thick film is fired with optimal time and temperature. However, decreasing the fabrication time is required due to high production power. Furthermore, there is a problem that silver in electrode is diffused throughout any substrates. For inhibiting the Ag diffusion and long fabrication time we considered a microwave heating. We investigated firing of silver thick film with conventional and microwave heating. The temperature of substrate was measured by thermal paper and the temperature of substrate was under $100\;^{\circ}C$ The shrinkage of electrode was measured with optical microscopy and optical profilometry. The shrinkage of electrode heat treated with microwave for 5min was similar to the that fired by the conventional heating for several hours. After firing by two types of heating, the diffusion of silver was determined using a optical microscope. The microstructure of sintered silver thick film was observed by SEM. Based on our results, the microwave heating should be a candidate heating source for the fabrication electronic devices in terms of saving the tact time and preventing the contamination of substrate.

  • PDF

Separation of Phosvitin from Egg Yolk without Using Organic Solvents

  • Jung, Samooel;Ahn, Dong Uk;Nam, Ki Chang;Kim, Hyun Joo;Jo, Cheorun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1622-1629
    • /
    • 2013
  • The objective of this study was to develop a new method to separate phosvitin from egg yolk without using organic solvents. Phosvitin was extracted from yolk granules using 10% NaCl or 10% $(NH_4)_2SO_4$ (final concentration) and then treated with heat to precipitate the lipoproteins from the extracted solution. The optimal pH for the phosvitin extraction from yolk granules was determined, and the iron-binding ability of the extracted phosvitin (final product) was tested. Adding 10% $(NH_4)_2SO_4$ disrupted the granules, and the subsequent thermal treatment at $90^{\circ}C$ for 1 h precipitated low density and high density lipoproteins, which enabled separation of phosvitin by centrifugation. The phosvitin concentration in the extract was significantly higher when the pH of the solution was adjusted to pH ${\geq}9$. The purity and recovery rate of phosvitin at the end of the separation process were approximately 78% and 56%, respectively. The separated phosvitin was confirmed to have ferrous and ferric iron binding ability. The advantages of this new method compared with the traditional methods include no organic solvents and high-priced equipment are needed for the separation. Also, this method is more environment and consumer friendly than that of the traditional methods.

Manufacturing Conditions for Rice Porridge with Optimum Properties after Microwave Range Reheating (마이크로웨이브 레인지 재가열 후 최적 특성을 갖는 쌀죽 제조조건)

  • Park, Hye-Young;Kim, Hyun-Joo;Sim, Eun-Yeong;Kwak, Jieun;Chun, Areum;Jo, Youngje;Woo, Koan Sik;Kim, Mi Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.4
    • /
    • pp.440-446
    • /
    • 2020
  • The purpose of this study was to derive the conditions for manufacturing rice porridge with optimum properties after reheating. The characteristics of rice porridge according to the soaking time, water addition rate, heating temperature, heating time, and cooling conditions were compared using the 'Samkwang' cultivar. In Step I, as the heating temperature increased, the weight change decreased and the viscosity increased, and the temperature known as the main factor of the gelatinization also appeared to affect the viscosity increase. In Step II, the viscosity and the texture properties was not significantly different as the soaking time was reduced, and 10 minutes was suitable because of due to the shortening effect of the total process time. In Step III, the residual heat was lowered by cooling after the rice porridge production, so the viscosity could be greatly reduced. Also, it was confirmed that the water addition rate of 900% and the heating temperature of 15 minutes were optimal manufacturing conditions. The next study will investigate the porridge processability of rice cultivars using these results.

A Method to Protect Mine Workers in Hot and Humid Environments

  • Sunkpal, Maurice;Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 2018
  • Background: Work comfort studies have been extensively conducted, especially in the underground and meteorological fields resulting in an avalanche of recommendations for their evaluation. Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others. Some are specifically formulated for the built and meteorological climates, thus making them unsuitable to accurately assess the climatic conditions in underground development and production workings. Methods: This paper presents a series of sensitivity analyses to assess the impact of environmental parameters and metabolic rate on the thermal comfort for underground mining applications. An approach was developed in the form of a "comfort model" which applied comfort parameters to extensively assess the climatic conditions in the deep, hot, and humid underground mines. Results: Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wettedness. Tolerable worker exposure times to minimize thermal strain due to dehydration are predicted. Conclusion: The analysis determined the optimal air velocity for thermal comfort to be 1.5 m/s. The results also identified humidity to contribute more to deviations from thermal comfort than other comfort parameters. It is expected that this new approach will significantly help in managing heat stress issues in underground mines and thus improve productivity, safety, and health.

Optimization and High-level Expression of a Functional GST-tagged rHLT-B in Escherichia coli and GM1 Binding Ability of Purified rHLT-B

  • Ma Xingyuan;Zheng Wenyun;Wang Tianwen;Wei Dongzhi;Ma Yushu
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • The Escherichia coli heat-labile enterotoxin B subunit (HLT-B) is one of the most powerful mucosal immunogens and known mucosal adjuvants. However, the induction of high levels of HLT-B expression in E. coli has proven a difficult proposition. Therefore, in this study, the HLT-B gene was cloned from pathogenic E. coli and expressed as a fusion protein with GST (glutathion S-transferase) in E. coli BL2l (DE3), in an attempt to harvest a large quantity of soluble HLT-B. The culture conditions, including the culture media used, temperature, pH and the presence of lactose as an inducer, were all optimized in order to obtain an increase in the expression of soluble GST-rHLT-B. The biological activity of the purified rHLT-B was assayed in a series of GMI-ELISA experiments. The findings of these trials indicated that the yield of soluble recombinant GST-rHLT-B could be increased by up to 3-fold, as compared with that seen prior to the optimization, and that lactose was a more efficient alternative inducer than IPTG. The production of rHLT-B, at 92 % purity, reached an optimal level of 96 mg/l in a 3.7 L fermentor. The specific GM1 binding ability of the purified rHLT-B was determined to be almost identical to that of standard CTB.

Concentration of Fermented Ethanol by Using Pervaporation System (투과증발 시스템을 이용한 발효에탄올 농축)

  • 안승호;장재화;유제강;이규현;고석문
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.65-74
    • /
    • 1997
  • Pervaporation pilot tests for obtaining the anhydrous ethanol, which is an automobile fuel additive for reducing air pollution, were carried out in the production field of fermented ethanol by using a PVA composite membrane. In the pervaporation dehydration of the ethanol/water azeotropic mixture, the membrane performance is concluded to be enhanced with the heating temperature of feed. In the determination of the permeate condensation temperature from the viewpoint of energy cost, an Optimal temperature was found to be near $0{\circ}C$. The results on the dehydration of fermented ethanol were similar to those of synthetic ethanol, which indicates that the pervaporation performance is not influenced by impurities contained in the ethanol to be dehydrated. From a comparison of calculated energy needed in the system and measured value in the pilot test, it is confirmed that the latent heat for vaporization of permeant on the permeate side of membrane is supplied from the feed.

  • PDF

Determination of the Optimal Operating Condition of the Hamworthy Mark I Cycle for LNG-FPSO (LNG-FPSO에의 적용을 위한 Hamworthy Mark I Cycle의 최적 운전 조건 결정)

  • Cha, Ju-Hwan;Lee, Joon-Chae;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.733-742
    • /
    • 2010
  • In this study, optimization was performed to improve the conventional liquefaction process of offshore plants, such as a LNG-FPSO(Liquefied Natural Gas-Floating, Production, Storage, and Offloading unit) by maximizing the energy efficiency of the process. The major equipments of the liquefaction process are compressors, expanders, and heat exchangers. These are connected by stream which has some thermodynamic properties, such as the temperature, pressure, enthalpy or specific volume, and entropy. For this, a process design problem for the liquefaction process of offshore plants was mathematically formulated as an optimization problem. The minimization of the total energy requirement of the liquefaction process was used as an objective function. Governing equations and other equations derived from thermodynamic laws acted as constraints. To solve this problem, the sequential quadratic programming(SQP) method was used. To evaluate the proposed method in this study, it was applied to the natural gas liquefaction process of the LNG-FPSO. The result showed that the proposed method could present the improved liquefaction process minimizing the total energy requirement as compared to conventional process.