• Title/Summary/Keyword: Optimal driving

Search Result 519, Processing Time 0.03 seconds

Design of a Wheel Test Bed for a Planetary Exploration Rover and Driving Experiment (행성탐사 로버 휠 테스트 베드 설계 및 주행 실험)

  • Kim, Kun-Jung;Kim, Seong-Hwan;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.372-377
    • /
    • 2015
  • In this paper, the consideration factors that affect the actual driving of a rover wheel was examined based on the wheel-terrain model. For the evaluation of driving performance in a real environment, the test bed of the rover wheel consists of the driving part of the wheel and sensing part of the various parameters was designed and assembled. Using the test bed, the preliminary driving experiment concerning the slip ratio, sinkage, and friction force according to the rotational velocity and the shape of the wheel were carried out and evaluated. The wheel test bed and the experiment results are expected to contribute to finding the optimal result in the designing of the wheel shape and the planning of the driving conditions through further study.

Finite Element Analysis and Geometric Parameter Optimization for BMT Driving Assembly (BMT 구동장치의 유한요소해석 및 형상변수 최적화)

  • Park, Young-Whan;Kwak, Jae-Seob;Jiating, Yan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.178-183
    • /
    • 2010
  • Base-mounted type(BMT) driving assembly in CNC machine tools is an indispensable part to improve productivity by reducing tool changeover time and to meet the ever-increasing demand of precision machine tools. This study aimed to perform finite element analysis and geometric parameter optimization to improve the efficiency of BMT driving assembly. First, simulations for three-dimensional structural and vibration analysis were performed using ANSYS/Workbench on the initial geometric models of BMT driving assembly. After analyzing stress and deformation concentration zones, several new geometrical models were designed and evaluated by design of experiments and ANSYS/DesignXplorer. Through a series of analysis-evaluation-modification cycles, it was seen that designed models were effective in determining optimal geometry of BMT driving assembly.

Analysis and Design of Driving Mechanism of Hybrid RMU (복합 소호 방식 RMU 구동 메커니즘 해석 및 설계)

  • Kwon, Byung-Hee;Ahn, Kil-Young;Oh, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.729-733
    • /
    • 2003
  • Hybrid RMU is a kind of power circuit breaker and protects electric devices from over-current. In this paper we built a dynamic model of RMU driving mechanism using ADAMS and performed a optimal design of several design parameters. Finally we developed a prototype of RMU driving mechanism through results of analysis and confirmed it to satisfy design requisitions.

  • PDF

The Optimum Calculation of Motor Load by Motor Driving Factor Application (운전율 적용에 의한 동력부하의 적정산정)

  • 어익수
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.192-197
    • /
    • 1998
  • This study has been focused on the selection of optimal electric motor load, which takes a lot of portions of motor driving factor in the building. Based on the past design data for existing electric motor load and method of calculation, it is known that in general electric machine load has been estimated excessively. For the accurate calculation, it is important apply to motor driving factor to be actually provided.

  • PDF

Analysis of Optimal and Pleasant Driving Condition using Physiological Signals (생리신호 측정을 통한 심리적 적정 운전상태 분석)

  • 김정룡;황민철;박지수;윤상영
    • Science of Emotion and Sensibility
    • /
    • v.7 no.3
    • /
    • pp.27-35
    • /
    • 2004
  • This study has investigated a psychological status of optimal and pleasant driving condition by measuring various physiological signals using SCR(skin conductance response), PPG(peripheral plethysmograph), SKT(skin temperature) and HR(heart rate). The physiological response was measured during various simulated driving conditions. We developed a hardware and algorithm to measure and analyze the physiological response. The physiological signals has reflected the level of driver's tension or relaxation as well as the heart rate. The emotional responses of drivers were also measured and analyzed in this experiment. The result of the study can be used to design a system to enhance the driver's emotional satisfaction as well as to monitor the driver's safety and health condition.

  • PDF

Moving Object Following by a Mobile Robot using a Single Curvature Trajectory and Kalman Filters (단일곡률궤적과 칼만필터를 이용한 이동로봇의 동적물체 추종)

  • Lim, Hyun-Seop;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.599-604
    • /
    • 2013
  • Path planning of mobile robots has a purpose to design an optimal path from an initial position to a target point. Minimum driving time, minimum driving distance and minimum driving error might be considered in choosing the optimal path and are correlated to each other. In this paper, an efficient driving trajectory is planned in a real situation where a mobile robot follows a moving object. Position and distance of the moving object are obtained using a web camera, and the rotation angular and linear velocities are estimated using Kalman filters to predict the trajectory of the moving object. Finally, the mobile robot follows the moving object using a single curvature trajectory by estimating the trajectory of the moving object. Using the estimation by Kalman filters and the single curvature in the trajectory planning, the total tracking distance and time saved amounts to about 7%. The effectiveness of the proposed algorithm has been verified through real tracking experiments.

Optimal Driving Mode Analysis for Reducing Energy Consumption in Electric Multiple Unit (전동열차의 주행에너지 소비를 절감하는 운전모드 해석)

  • Kim Chi Tae;Kim Dong Hwan;Park Young Il;Han Sung Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.174-183
    • /
    • 2005
  • A train driving requires to n the fixed distance within given time, and it is desirable to consume low energy if necessary. Reducing energy consumption depends on the train operation modes by either manual or automatic operation. In this article, an operation to reduce energy consumption by changing modes of train operation by a driver without changing the train operation requirement is investigated. The powering model, braking model and consumed energy calculation model are developed, then simulated by using a Matlab software. The accuracy of the train dynamic model established by the simulations is verified by comparing with the real experimental data. Several simulations by various operations in the real track are executed, then the desirable pattern of train driving is found.

A Precise Position Control of Mobile Robot with Two Wheels (2휠 구동 모바일 로봇의 정밀 위치제어)

  • Jung, Yang-Guen;Baek, Seung-Hak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.67-74
    • /
    • 2015
  • Two-wheeled driying mobild robots are precise controlled in terms of linear contol methods without considering the nonlinear dynamical characteristics. However, in the high maneuvering situations such as fast turn and abrupt start and stop, such neglected terms become dominant and heavy influence the overall driving performance. This study describes the nonlinear optimal control method to take advantage of the exact nonlinear dynamics of the balancing robot. Simulation results indicate that the optimal control outperforms in the respect of transient performance and required wheel torques. A design example is suggested for the state matrix that provides design flexibility in the control. It is shown that a well-planned state matrix by reflecting the physics of a balancing robot greatly conrtibutes to the driving performance and stability.

A Study of Optimal Driving Method for Piezoelectric Device Applications (압전소자 응용분야의 최적효율 운전연구)

  • Kim, Yong-Wook;Kim, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1540-1546
    • /
    • 2017
  • In piezoelectric device applications, it is important to improve a system efficiency because of the low generated power. In this paper, an optimal driving method is proposed to improve a system efficiency for a piezoelectric energy harvesting system. The proposed method considers disappear energy in input capacitors and the converter efficiency according to the input voltage magnitude to minimize energy losses. Experimental results based on various energy generation cases verify that the proposed method significantly improves the system efficiency; the efficiency is approximately 9.97% higher than that of the conventional method.

Development and Validation of A Finite Optimal Preview Control-based Human Driver Steering Model (최적예견 제어 기법을 이용한 운전자 조향 모델의 개발 및 검증)

  • Kang, Ju-Yong;Yi, Kyong-Su;Noh, Ki-Han
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.855-860
    • /
    • 2007
  • This paper describes a human driver model developed based on finite preview optimal control method. The human driver steering model is constructed to minimize a performance index which is a quadratic form of lateral position error, yaw angle error and steering input. Simulation studies are conducted using a vehicle simulation software, Carsim. The Carsim vehicle model is validated using vehicle test data. In order to validate the human driving steering model, the human driver steering model is compared to the driving data on a virtual test track(VTT) and the actual vehicle test data. It is shown that human driver steering behaviors can be well represented by the human driver steering model presented in this paper

  • PDF