• Title/Summary/Keyword: Optimal distribution

Search Result 2,851, Processing Time 0.031 seconds

Chaotic Search Algorithm for Network Reconfiguration in Distribution Systems (배전계통 최적구성을 위한 카오스 탐색법 응용)

  • 이상봉;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.325-332
    • /
    • 2003
  • The loss minimization is one of the most important problems to save the operational cost in distribution systems. This paper presents an efficient method for optimal feeder reconfiguration of distribution systems. Chaos search algorithm (CSA) is used to reconfigure distribution systems so that active power losses are globally minimized with turning on/off sectionalizing switches. In optimization problem, the CSA searches the global optimal solution on the basis of regularity in chaotic motions and easily escapes from local or near optimal solution. The CSA is tested on 15 buses and 32 buses distribution systems, and the results indicate that it is able to determine appropriate switching options for global optimum reconfiguration.

Optimal Capacity and Allocation of Distributed Generation by Minimum Operation Cost in Distribution Systems

  • Shim Hun;Park Jung-Hoon;Bae In-Su;Kim Jin-O
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In the operation of distribution systems, DGs (Distributed Generations) are installed as an alternative to extension and the establishment of substations, transmission and distribution lines according to the increasing power demand. In the operation planning of DGs, determining optimal capacity and allocation achieves economical profitability and improves the reliability of power distribution systems. This paper proposes a determining method for the optimal number, size and allocation of DGs in order to minimize the operation costs of distribution systems. Capacity and allocation of DGs for economical operation planning duration are determined to minimize total cost composed with power buying cost, operation cost of DGs, loss cost and outage cost using the GA (Genetic Algorithm).

Optimal Design for Indoor Thermal Environment based on CFD Simulation and Genetic Algorithms (CFD 연성해석과 유전자 알고리즘을 이용한 실내 열환경 최적설계에 관한 연구)

  • 김태연;이윤규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • The optimal design method of indoor thermal environment using CFD coupled simulation and genetic algorithms (GA) is developed in this study. CFD could analyze the thermal environment considering the distribution of temperature, velocity, etc. in a room. Therefore, It would be appropriate to use CFD for the optimal design method considering their distribution. In this paper, the optimal design means the most appropriate boundary conditions of the room among the conditions where the design target of indoor therm environment is achieved. Two step optimal indoor thermal environment design method is proposed. It includes the GA for searching the optimal indoor thermal environment design. To examine the performance of this method, the optimal design of hybrid ventilation system, which uses the natural cross ventilation and the radiation-cooling panel is conducted. The optimal design which satisfies the design target (thermal comfort, minimum cooling load, minimum vertical temperature difference) is found using two step optimal design method.

An Integrated Design Problem of A Supply Chain (공급능력 및 재고의 통합적 설계에 관한 연구)

  • Kim, Seong-Cheol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.267-284
    • /
    • 2008
  • Consider a supply chain where products are produced at a manufacturing system, shipped to a distribution center, and then supplied to customers. The distribution center controls inventory based on a base-stock policy, and whenever a unit of product is demanded by a customer, an order is released to the production system. Unsatisfied demand is backordered, and the inventory and backordered units are a function of the base-stock level. The manufacturing system is modeled as an M/M/s/c queueing system, and orders exceeding the limited buffer capacity are blocked and lost. The throughput of the manufacturing system and the steady state distribution of the outstanding orders are functions of number of servers and buffers of the manufacturing system. There is a profit obtained from throughput and costs due to servers and buffers of the manufacturing system, and also costs due to inventory positions of the distribution center, and we want to maximize the total production profit minus the total cost of the supply chain by simultaneously determining the optimal number of servers and buffers of the manufacturing system and the optimal base-stock level of the distribution center. We develope two algorithms, one analytical but without guarantee of the optimal solution and one optimal but without complete analytical proofs. The problem integrates strategic problem of the manufacturing system with tactical problem of the distribution center in a supply chain.

  • PDF

Optimal Release Time for Software Considering Distribution of Periodic Service Packs and Uncertain Patches during Operational Phase (사용단계에서 주기적 서비스 팩 배포와 불확실한 패치 배포를 고려한 소프트웨어의 최적 출시시기)

  • Park, Il Gwang;Kong, Myung Bock
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.487-493
    • /
    • 2007
  • In this paper, we deal with an optimal software-release problem of determining the time to stop testing and release the software system to the user. The optimal release time problem is considered from maintenance like the periodic distribution of service packs and the unpredictable distribution of patches after the release. Moreover, the environment of software error-detection during operation differs from the environment during testing. This paper proposes the software reliability growth model which incorporates periodic service packs, unpredictable patches and operational environment. Based on the proposed model, we derive optimal release time to minimize total cost composed of fixing an error, testing and maintenance. Using numerical examples, optimal release time is determined and illustrated.

An Application of the Optimal Routing Algorithm for Radial Power System using Improved Branch Exchange Technique (개선된 선로교환 기법을 이용한 방사상 전력계통의 최적 라우팅 알고리즘의 적용)

  • Kim, Byeong-Seop;Sin, Jung-Rin;Park, Jong-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.302-310
    • /
    • 2002
  • This paper presents an application of a improved branch exchange (IBE) algorithm with a tie branch power (TBP) flow equation to solve the Optimal Routing problem for operation of a radial Power system including power distribution system. The main objective of the Optimal Routing problem usually is to minimize the network real power loss and to improve the voltage profile in the network. The new BE algorithm adopts newly designed methods which are composed by decision method of maximum loss reduction and new index of loss exchange in loop network Thus, the proposed algorithm in this paper can search the optimal topological structures of distribution feeders by changing the open/closed states of the sectionalizing and tie switches. The proposed algorithm has been evaluated with the practical IEEE 32, 69 bus test systems and KEPCO 148 bus test system to show favorable performance gained.

The Development of the Real Time Optimal Byproduct Gas Supply System

  • Kim, Jeonghwan;Yi, Heui-Sok;Chonghum Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.6-69
    • /
    • 2002
  • The optimal byproduct gas supply system was developed for the optimal management of the byproduct gases in the iron and steel making process based on EXCEL environment. It supplies optimal byproduct gas distribution result as well as analysis including expected electricity generation, holder level change, amount of oil consumption, energy distribution to each boiler, and efficiency of energy resource. To reflect the changing environment of the plant such as maintenance, the system was developed to easily change the optimization model for changing configuration of the system. To verify the performance of the system , case studies for various situation was performed with the developed system, a...

  • PDF

Optimal Allocation of Distributed Solar Photovoltaic Generation in Electrical Distribution System under Uncertainties

  • Verma, Ashu;Tyagi, Arjun;Krishan, Ram
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1386-1396
    • /
    • 2017
  • In this paper, a new approach is proposed to select the optimal sitting and sizing of distributed solar photovoltaic generation (SPVG) in a radial electrical distribution systems (EDS) considering load/generation uncertainties. Here, distributed generations (DGs) allocation problem is modeled as optimization problem with network loss based objective function under various equality and inequality constrains in an uncertain environment. A boundary power flow is utilized to address the uncertainties in load/generation forecasts. This approach facilitates the consideration of random uncertainties in forecast having no statistical history. Uncertain solar irradiance is modeled by beta distribution function (BDF). The resulted optimization problem is solved by a new Dynamic Harmony Search Algorithm (DHSA). Dynamic band width (DBW) based DHSA is proposed to enhance the search space and dynamically adjust the exploitation near the optimal solution. Proposed approach is demonstrated for two standard IEEE radial distribution systems under different scenarios.

경쟁력제고를 위한 한국 자동차산업의 최적 유통구조에 대한 소고

  • 전달영
    • Journal of Distribution Research
    • /
    • v.2 no.1
    • /
    • pp.59-85
    • /
    • 1997
  • The automobile industry in Korea has grown to the fifth in the world in terms of production capacity. In spite of the production growth, the marketing aspects such as distribution and customer service in the auto industry are still behind the world-class. Thus, the major purposes of this paper are as follows. The first is to analyze competitive structure of the industry and to compare distribution strategies of the major auto firms(Hyundai, Daewoo, and Kia). The second is to theoretically explain the transition from the vertical marketing system to the dealer system using transaction cost analysis. The third is to compare auto distribution channels in Korea with those in the U.S. and Japan. Finally, an optimal channel stucture in the auto industry is suggested after reviewing five alternative channel structures such as corporate-owned VMS, sales-specializing firm, multiplex system(VMS+limited dealer system), dual sales channel, and advanced dealer system. In the short-run, sales-specilizing firm was suggested as an optimal channel system to enhance customer satisfaction by integrating sales and customer service. In the long-run, advanced dealer system through regional differentiation was desirable for an optimal channel structure by organically integrating new car sales, used car sales, and after service to provide total marketing service to customers.

An Algorithm on Optimal Placement Decision of Automatic Switches for 6 Sections/3 Links Configuration in DAS

  • Lim, Il-Hyung;Zhang, Wen-Hao;Trirohadi, Hamsyah;Choi, Myeon-Song;Lee, Seung-Jae;Ha, Bok-Nam
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.328-333
    • /
    • 2011
  • A Distribution Automation System (DAS) is operated by monitoring and control of the field statesusing Feeder Remote Terminal Units (FRTUs) installed together withautomatic switches.An optimal placement of automatic switchescan enhanceefficiencyof the operation and restoration, and improve the power supply reliability ofa DAS.This paper proposes an algorithm to decide the optimal placement of automatic switches ina DAS.The proposed algorithm was developed ona DAS witha six sections and three links configuration. The proposed algorithm was provided inaneight-feeder power distribution system.