• 제목/요약/키워드: Optimal distance

검색결과 1,294건 처리시간 0.025초

유방 유형에 따른 브래지어 선정 프로그램 (Program for the Selection of Brassieres Depending on Breast Types)

  • 이현영;정수경;홍경희
    • 한국생활과학회지
    • /
    • 제14권3호
    • /
    • pp.467-473
    • /
    • 2005
  • The integrative Internet program was developed for the selection of optimal brassiere components according to the breast types of middle-aged women. In this program, a customer is classified into a certain group through three steps of a discriminant analysis. Three variables used in the analysis include breast volume, radii of curvature of under-breast curve, and a distance between inner breast points. Using individual data of three variables, the optimal brassiere components, i.e. brassiere cup size, curvature of front panel and wire, distance between cups, are suggested for each customer. Discrimination of breast types using only 2D measurements is also included for those who do not have easy access to a 3D measurement device.

  • PDF

A Distance and Angle Based Routing Algorithm for Vehicular Ad hoc Networks

  • ;이경현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2012년도 춘계학술발표대회논문집
    • /
    • pp.190-192
    • /
    • 2012
  • Vehicular Ad hoc Networks (VANETs) is the new wireless networking concept of mobile ad hoc networks in research community. Routing in vehicular is a major challenge and research area. The majority of current routing algorithms for VANETs utilize indirect metrics to select the next hop and produce optimal node path. In this paper, we propose a distance and angle based routing algorithm for VANETs, which combines a distance approach with an angle based geographical strategy for selecting the next hop, with the purpose of using direct metrics to build a optimal node route. The proposed algorithm has better performance than the previous scheme.

  • PDF

The Random Type Quadratic Assignment Problem Algorithm

  • Lee, Sang-Un
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.81-88
    • /
    • 2016
  • The optimal solution of quadratic assignment problem (QAP) cannot get done in polynomial time. This problem is called by NP-complete problem. Therefore the meta-heuristic techniques are applied to this problem to get the approximated solution within polynomial time. This paper proposes an algorithm for a random type QAP, in which the instance of two nodes are arbitrary. The proposed algorithm employs what is coined as a max flow-min distance rule by which the maximum flow node is assigned to the minimum distance node. When applied to the random type QAP, the proposed algorithm has been found to obtain optimal solutions superior to those of the genetic algorithm.

멀티뷰 카메라를 사용한 외부 카메라 보정 (Extrinsic calibration using a multi-view camera)

  • 김기영;김세환;박종일;우운택
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we propose an extrinsic calibration method for a multi-view camera to get an optimal pose in 3D space. Conventional calibration algorithms do not guarantee the calibration accuracy at a mid/long distance because pixel errors increase as the distance between camera and pattern goes far. To compensate for the calibration errors, firstly, we apply the Tsai's algorithm to each lens so that we obtain initial extrinsic parameters Then, we estimate extrinsic parameters by using distance vectors obtained from structural cues of a multi-view camera. After we get the estimated extrinsic parameters of each lens, we carry out a non-linear optimization using the relationship between camera coordinate and world coordinate iteratively. The optimal camera parameters can be used in generating 3D panoramic virtual environment and supporting AR applications.

  • PDF

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

Hopfield Network를 이용한 이종 부품 결합의 최적화 알고리즘 (Optimal Connection Algorithm of Two Kinds of Parts to Pairs using Hopfield Network)

  • 오제휘;차영엽;고경용
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.174-179
    • /
    • 1999
  • In this paper, we propose an optimal algorithm for finding the shortest connection of two kinds of parts to pairs. If total part numbers are of size N, then there are order 2ㆍ(N/2)$^{N}$ possible solutions, of which we want the one that minimizes the energy function. The appropriate dynamic rule and parameters used in network are proposed by a new energy function which is minimized when 3-constraints are satisfied. This dynamic nile has three important parameters, an enhancement variable connected to pairs, a normalized distance term and a time variable. The enhancement variable connected to pairs have to a perfect connection of two kinds of parts to pairs. The normalized distance term get rids of a unstable states caused by the change of total part numbers. And the time variable removes the un-optimal connection in the case of distance constraint and the wrong or not connection of two kinds of parts to pairs. First of all, we review the theoretical basis for Hopfield model and present a new energy function. Then, the connection matrix and the offset bias created by a new energy function and used in dynamic nile are shown. Finally, we show examples through computer simulation with 20, 30 and 40 parts and discuss the stability and feasibility of the resultant solutions for the proposed connection algorithm.m.

  • PDF

페달 종류 및 위치에 따른 최적 페달 레이아웃 설정 (Optimal Layout of Vehicle Pedals Depending on the Types and Positions of Vehicle Pedals)

  • 최정필;정의승;정성욱;정성욱
    • 대한인간공학회지
    • /
    • 제26권4호
    • /
    • pp.91-101
    • /
    • 2007
  • The purpose of this study is to propose an optimal layout for the accelerator and brake pedals in sedan and SUV, and also to compare the pendant-type pedal with organ-type pedal. 12 male subjects participated in the experiment, the subjects were divided into 3 groups according to height percentile(under 50%ile, 50%ile to 75%ile, over 75%ile). Independent variables were seat height (H30), X and Y coordinates of the center of accelerator and brake pedals and the x and y relative distance between two pedals. Dependent variable was subjective ratings for lower body discomfort. The response surface methodology using a central composite design was employed to develop a prediction model for lower body discomfort of each pedal. It is noticeable that the lateral position of the accelerator in all groups was not statistically significant. The optimal locations of both pedals were found to be distinct according to the percentile of subjects. X distance from accelerator to brake of both-type pedals is similar. But Y distance from accelerator to brake of organ-type is less about 2-3cm than that of pedant-type.

수정된 K-means 알고리즘 (Modified K-means algorithm)

  • 김형철;조제황
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 2호
    • /
    • pp.115-118
    • /
    • 1999
  • One of the typical methods to design a codebook is K-means algorithm. This algorithm has the drawbacks that converges to a locally optimal codebook and its performance is mainly decided by an initial codebook. D. Lee's method is almost same as the K-means algorithm except for a modification of a distance value. Those methods have a fixed distance value during all iterations. After many iterations. because the distance between new codevectors and old codevectors is much shorter than the distance in the early stage of iterations, the new codevectors are not affected by distance value. But new codevectors decided in the early stage of learning iterations are much affected by distance value. Therefore it is not appropriate to fix the distance value during all iterations. In this paper, we propose a new algorithm using each different distance value between codevectors for a limited iterations in the early stage of learning iteration. In the experiment, the result show that the proposed method can design better codebooks than the conventional K-means algorithms.

  • PDF

여자 세단뛰기 운동수행의 일관성과 속도전환계수에 의한 최적의 국면비 (The Velocity Conversion Coefficient and Consistency for the Optimal Phase Ratio on the Performance of the Women's Triple Jump)

  • 류재균;장재관
    • 한국운동역학회지
    • /
    • 제25권1호
    • /
    • pp.39-47
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the velocity conversion coefficient and invariance for the optimal phase ratio on the performance of the women's triple jump. Methods : Three-dimensional kinematic data were obtained from the three finalists of the women's triple jumper competition at the 2011 Daegu IAAF World Championships. Computer simulations were performed using the biomechanical model of the triple jump to optimize the phase ratio for the longest actual distance for all athletes with altered velocity conversion coefficients. Results : Top elite triple jumpers showed better technical consistency at the phase ratio. Also, no consistent relationship was observed between the loss in horizontal velocity and the gain in vertical velocity across supporting the three phase. In addition, regardless of the magnitude A1, all athletes were optimized with jump-dominated technique. Finally, as the magnitude of A1 increased, the athletes showed better performance. The obtained overall distance jumped showed the longest actual distance when the optimal phase ratio was transferred from hop-dominated to jump-dominated(the step ratio was 30%~31%), and when the optimal phase ratio was transferred from balanced to jump-dominated(the step ratio was 27%~29%). Conclusion : Future studies need to be conducted in order to explore the active landing motion and the inclination angle of the body with the velocity conversion coefficient simultaneously at each supporting phase.