• Title/Summary/Keyword: Optimal design structure

Search Result 1,472, Processing Time 0.03 seconds

Structure-Control Combined Design for 3-D Flexible Structure (3차원 유연구조물에 대한 구조-제어 통합설계)

  • Park Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.

A Study on the Minimum Weight Design for Flexible Structure (유연구조물의 최소중량설계에 관한 연구)

  • 박중현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.153-159
    • /
    • 2004
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken.

Optimal Design of Machine Tool Structure for Static Loading Using a Genetic Algorithm (유전자 알고리듬을 이용한 공작기계 구조물의 정역학적 최적설계)

  • Park, Jong-Kweon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.66-73
    • /
    • 1997
  • In many optimal methods for the structural design, the structural analysis is performed with the given design parameters. Then the design sensitivity is calculated based on its structural anaysis results. There-after, the design parameters are changed iteratively. But genetic algorithm is a optimal searching technique which is not depend on design sensitivity. This method uses for many design para- meter groups which are generated by a designer. The generated design parameter groups are become initial population, and then the fitness of the all design parameters are calculated. According to the fitness of each parameter, the design parameters are optimized through the calculation of reproduction process, degradation and interchange, and mutation. Those are the basic operation of the genetic algorithm. The changing process of population is called a generation. The basic calculation process of genetic algorithm is repeatly accepted to every generation. Then the fitness value of the element of a generation becomes maximum. Therefore, the design parameters converge to the optimal. In this study, the optimal design pro- cess of a machine tool structure for static loading is presented to determine the optimal base supporting points and structure thickness using a genetic algorithm.

  • PDF

An integrated optimal design of energy dissipation structures under wind loads considering SSI effect

  • Zhao, Xuefei;Jiang, Han;Wang, Shuguang
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • This paper provides a simple numerical method to determine the optimal parameters of tuned mass damper (TMD) and viscoelastic dampers (VEDs) in frame structure for wind vibration control considering the soil-structure interation (SSI) effect in frequency domain. Firstly, the numerical model of frame structure equipped with TMD and VEDs considering SSI effect is established in frequency domain. Then, the genetic algorithm (GA) is applied to obtain the optimal parameters of VEDs and TMD. The optimization process is demonstrated by a 20-storey frame structure supported by pile group for different soil conditions. Two wind resistant systems are considered in the analysis, the Structure-TMD system and the Structure-TMD-VEDs system. The example proves that this method can quickly determine the optimal parameters of energy dissipation devices compared with the traditional finite element method, thus is practically valuable.

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.

A study on the optimal configuration of harbor structure under the combined loads

  • Cho, Kyu-Nam
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.371-382
    • /
    • 2009
  • Response of harbor structure to environmental loads such as wave load, impact load, ship's contacting load, is a fundamental factor in designing of the structure's optimal configuration. In this paper, typical environmental loads against coastal structures are investigated for designing of the optimal harbor structure. Loads to be considered here are wave load, impact load and contacting load due to ship mooring. Statistical analysis for several harbor structure types under the corresponding loads is carried out, followed by investigation of effect of individual environmental load. Based on these, the optimal configuration for the harbor structure is obtained after considerable engineering process. Estimation of contacting load of the ship is suggested using effective energy concepts for the load, and analysis of structural behavior is done for the optimal designing of the structure in the particular load. A guideline for the design process of the harbor structure is established, and safety of the structure is examined by proposed scheme. For verification of the analytical approach, various steel-piled coastal structures and caissons are chosen and relevant structural analyses are carried out using the Finite Element Methods combined with MIDAS/GTS and ANSYS code. It is found using the Morison equation that impact load cannot be a major load in the typical harbor structure compared with the original wave load, and that configuration shape of the structure may play an important role in consideration of the response criteria.

Optimal Design of Integrated Control System Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 복합제어시스템의 최적설계)

  • Park, Kwan-Soon;Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • For the vibration control of earthquake-excited buildings, an optimal design method of integrated control system considering soil-structure interaction is studied in this paper. Interaction between soils and the base of the building is simply modeled as lumped parameters and equations of motion are derived. The equations of motion are transformed into the state space equations and the probabilistic excitations such as Kanai-Tajumi power spectral density function is introduced. Then an optimization problem is formulated as finding hybrid or integrated control systems which minimizes the stochastic responses of the building structure for given constraints. In order to investigate the feasibility of the optimization method, an example design and numerical simulations are performed with tenstory building. Finally, numerical results are compared with a conventional design case that soil-structure interaction is not considered.

Combined Optimal Design of Structure-Control Systems by Sliding Mode Control (슬라이딩모드 제어 기법을 이용한 구조-제어 시스템의 통합 최적 설계)

  • Park, Jung-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.45-51
    • /
    • 2002
  • To achieve the lightweight and robust design of a structure, it is requested to design a structure and its control system simultaneously, which is called as the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as an example for the applying the optimum design method. An initial load and a time varying disturbance were applied at the free end of the beam. Sliding mode control was selected due to its insensitiveness to the disturbance compared with other modes. It is known that the sliding mode control is robust to the disturbance and the uncertainty only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane and the objective function of the optimum switching hyper plane was assumed to be the objective one of the control system. The total weight of the structure was treated as a constraint and the cross sectional areas of the beam were considered as design variables, which means a nonlinear programming problem. The sequential linear programming method was applied to solve it. As a result of the optimum design, the effect of attenuating vibrations has been improved obviously. Moreover, lightweight design of the structure became possible from the relationship of the weight of the structure and the control objective function.

Sensitivity Analysis and Optimal design for the Elasto-plastic buckling of Vehicle Structures (차체구조물의 탄소성좌굴에 관한 민감도해석과 최적설계)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.106-112
    • /
    • 1998
  • Experience and experiments show that in many cases the buckling limit is reached at a much smaller load level than is predicted by linear buckling analysis. In this paper, it is considered linear and nonlinear of plane vehicle structure and estimates design sensitivity of the cross sectional area that is composed plane vehicle structure and performs optimal design. It compares linear vehicle structure with nonlinear vehicle structure for optima design result that is selected constraint condition of buckling load.

  • PDF

Optimal Design of Reinforced Concrete Frame Structure by Limit State Design Method (LSD에 의한 철근콘크리트 뼈대 구조의 최적설계)

  • 김동희;유홍렬;박문호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.4
    • /
    • pp.61-67
    • /
    • 1985
  • This study is concerned with the optimum design of reinforced concrete frame structure with multi-stories and multi-bays by Limit State Design Method aimed to establish a synthetical optimal method that can simultaneously acomplish structural analysis and sectional desig. For optimum solution, the Successive Linear Programming known as effective to nonlinear optimization problem: including both multi-design variables and mulit-constrained condition was applied. The developed algorithm was applied to an actual structure and reached following results. 1)The developed algorithm was rvey effective converging to an optimal solution with 3 to 5 iteration. 2)An optimal solution was showed when bending moment redistribution factor a was 0.80. 3)The column was, regardless of story, controlled by the long column when unbraced, while in case of braced column, it is designed with 3 short column controlled by thrust and bending moment, and the supporting condition had little effect on the optimization results.

  • PDF