• Title/Summary/Keyword: Optimal design of ship structure

Search Result 51, Processing Time 0.018 seconds

Optimal Design Method of Dynamic Vibration Absorber to Reduce Resonant Vibration Response of Ship Local Structure (선박 국부구조의 공진응답 저감을 위한 동흡진기 최적 설계 방법)

  • Kwon, Hyuk;Cho, Daeseung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.134-140
    • /
    • 2022
  • Ship local structure sometimes experiences severe vibration due to the resonance with an excitation force generated by the propulsion system. In that case, the installation of dynamic vibration absorber such as Tuned Mass Damper (TMD) on the structure can be considered as an effective alternative countermeasure to reduce the troublesome vibration if structural modification or change of excitation frequencies is difficult. Meanwhile, the conventional optimal design method of TMD premises the target structure exposed on an excitation force without the constraint of its magnitude and frequency range. However, the frequencies of major ship excitation forces due to propulsion system are normally bounded and its magnitude is varied according to its operation speed. Hence, the optimal design of TMD to reduce the resonant vibration of ship local structure should be differently approached compared with the conventional ones. For the purpose, this paper proposes an optimal design method of TMD considering maximum frequency and magnitude variation of a target harmonic excitation component. It is done by both lowering the resonant response at the 1st natural frequency and locating the 2nd natural frequency over maximum excitation frequency for the idealized 2 degree of freedom system consisted of the structure and the TMD. For the validation of the proposed method, a numerical design case of TMD for a ship local structure exposed on resonant vibration due to a propeller excitation force is introduced and its performance is compared with the conventionally designed one.

A study on the optimal configuration of harbor structure under the combined loads

  • Cho, Kyu-Nam
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.371-382
    • /
    • 2009
  • Response of harbor structure to environmental loads such as wave load, impact load, ship's contacting load, is a fundamental factor in designing of the structure's optimal configuration. In this paper, typical environmental loads against coastal structures are investigated for designing of the optimal harbor structure. Loads to be considered here are wave load, impact load and contacting load due to ship mooring. Statistical analysis for several harbor structure types under the corresponding loads is carried out, followed by investigation of effect of individual environmental load. Based on these, the optimal configuration for the harbor structure is obtained after considerable engineering process. Estimation of contacting load of the ship is suggested using effective energy concepts for the load, and analysis of structural behavior is done for the optimal designing of the structure in the particular load. A guideline for the design process of the harbor structure is established, and safety of the structure is examined by proposed scheme. For verification of the analytical approach, various steel-piled coastal structures and caissons are chosen and relevant structural analyses are carried out using the Finite Element Methods combined with MIDAS/GTS and ANSYS code. It is found using the Morison equation that impact load cannot be a major load in the typical harbor structure compared with the original wave load, and that configuration shape of the structure may play an important role in consideration of the response criteria.

Development of Doubler Plate Design System for Ship Structure Subjected to In-plane Combined Loads and Lateral Pressure (면내조합하중과 횡압 하의 선박 이중판 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.146-152
    • /
    • 2019
  • A design system was developed for the doubler plate of a ship structure simultaneously subjected to in-plane loads and lateral pressure based on general dimensions and those of a representative ship structure. An equivalent design equation that considers various structural design parameters was derived by introducing the equivalent plate thickness theory, and the design of the doubler plate reinforcement of the ship structure was developed. A hybrid structural design system was established for a doubler plate simultaneously subjected to in-plane loads and lateral pressure consisting of two modules: an optimized design module and a double plate strength & design review module. The practical application of this design system was illustrated to show its usability. It was found that the design safety of the doubler plate was ensured, and this system could be used as an initial design guide to review the double plate reinforcement for a dent or corrosion of the ship plate members. Using the developed design system would make it possible to obtain a more reasonable doubler plate structure that considers the rational reinforcement of plate members of ship structures. In addition, a more reliable structural analysis using a strength evaluation process can be performed to verify the efficiency of the optimum structural design for the doubler plate structure.

A Study on the Design and Structure Optimization of an Automatic Mooring System for a 6000 ton Class Autonomous Ship (6000톤급 자율운항선박을 위한 자동계류장치 설계 및 구조 최적화에 대한 연구)

  • Kim, Namgeon;Shin, Haneul;Kim, Teagyun;Park, Jihyuk
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.493-499
    • /
    • 2022
  • This paper presents the design for the kinematic structure of a system for an automatically moored 6000 ton autonomous ship in a port, and the process and results of optimal design for the link cross-sectional shape. We propose an automatic mooring system with a PPP type serial manipulator structure capable of linear motion in the XYZ axis. The mooring force applied by the mooring system was derived with dynamics simulation tool "ADAMS". The design goal is the minimization of the cross-sectional area of the link. Constrains include compressive stress and shear stress. The optimization problems were solved by using the sequential quadratic programing method implemented in the fmincon package. The shape of the cross section was assumed to be rectangle. Through future research, we plan to manufacture automatic mooring system for 6000ton class autonomous ship.

Application of Systems Engineering based Design Structure Matrix Methodology for Optimizing the Concept Design Process of Naval Ship (함정 개념설계 프로세스 최적화를 위한 시스템엔지니어링 기반의 설계구조행렬 방법론 적용)

  • Park, Jinwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Naval ship design and related other activities can be characterized by the complexity of the interactions among products, activities, and disciplines. Such complexities often result in inferior designs, cost overrun, and late-delivery. Hence there exist tremendous interests in both improving the design process itself and optimizing the interactions among design activities. This paper looks at the complexity of designing naval ships thereby leading to the innovation of current ship design practices using design structure matrix. It can be used to induce the optimal ordering of design activities as well as identify sources of complexities. The method presented here identifies coupled design activities useful for reducing the complexity of naval ship design as well as optimally reordering design activities. This paper recommends the use of design structure matrix method suitable for numerically optimizing the concept design process of naval ship, and reducing cost and time required in designing naval ships by modeling and analyzing the design activities and engineering tasks, defined in systems engineering planning documents.

Development of the Design System for the Lifting Lug Structure (탑재용 러그 구조의 설계 시스템 개발)

  • 함주혁
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.189-194
    • /
    • 2000
  • Due to the rapid growth of ship building industry and increment of ship construction in Korea, several hundred thousand of lifting lugs per year, have been installed at the lifting positions of ship block and removed after finishing their function, therefore, appropriate design system for strength check or optimal design of each lug structure has been required in order to increase the capability of efficient design. In this study, design system of D-type lifting lug structure which is most popular and useful in shipyards, was developed for the purpose of initial design of lug structure. Developed system layout and graphic user interface for this design system based on the C++ language were explained step by step. Using this design system, more efficient performance of lug structural design will be expected on the windows of personal computer.

  • PDF

Optimal dimension design of a hatch cover for lightening a bulk carrier

  • Um, Tae-Sub;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • According to the increase of the operating cost and material cost of a ship due to the change of international oil price, a demand for the lightening of the ship weight is being made from various parties such as shipping companies, ship owners, and shipyards. To satisfy such demand, many studies for a light ship are being made. As one of them, an optimal design method of an existing hull structure, that is, a method for lightening the ship weight based on the optimization technique was proposed in this study. For this, we selected a hatch cover of a bulk carrier as an optimization target and formulated an optimization problem in order to determine optimal principal dimensions of the hatch cover for lightening the bulk carrier. Some dimensions representing the shape of the hatch cover were selected as design variables and some design considerations related to the maximum stress, maximum deflection, and geometry of the hatch cover were selected as constraints. In addition, the minimization of the weight of the hatch cover was selected as an objective function. To solve this optimization problem, we developed an optimization program based on the Sequential Quadratic Programming (SQP) using C++ programming language. To evaluate the applicability of the developed program, it was applied to a problem for finding optimal principal dimensions of the hatch cover of a deadweight 180,000 ton bulk carrier. The result shows that the developed program can decrease the hatch cover's weight by about 8.5%. Thus, this study will be able to contribute to make energy saving and environment-friendly ship in shipyard.

A Study on the Application of FBS Design Model to Preliminary Ship Design (선박 초기설계에 FBS 설계 모델의 응용에 관한 연구)

  • Park, Chang-Kue;Yang, Young-Soon;Pyo, Sang-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.192-201
    • /
    • 2008
  • The design process becomes more difficult due to the increasing complexity of products. Thus, without any proper design experience, designer cannot handle his design problems systematically. Besides, the conventional optimal design method cannot be used effectively at the early design stage, since most design problems must be formulated in terms of objective and constraint functions based on the mathematical concepts of Operation Research. Thus, in this paper, new design concept based on FBS (Function-Behavior-Structure) design model is introduced to help the novice designer formulate the complex design problems systematically into a mathematical form. In this FBS model, function means the designer's new intents designer wants to create for, structure stand for a final product configuration and behaviour is a product's performance. FBS design model is thus rather totally different concept used for formulating design problem, compared with conventional optimal design method. To validate this new FBS model, 330K VLCC design case is performed, and we found, though it is one design example case, that this new design concept could be effectively used for future ship design problems since, during the formulating design problem, the only engineering terminology such as function, structure, and behaviour of design product is used based on the engineering concepts, instead of mathematical terminology such as objective and constraints.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

A Study on the Optimal Facility Layout Design Using an Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 최적 공간 배치 설계에 관한 연구)

  • 한성남;이규열;노명일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.3
    • /
    • pp.174-183
    • /
    • 2001
  • This study proposes an improved genetic algorithm (GA) to derive solutions for facility layout problems having inner walls and passages. The proposed algorithm models the layout of facilities on a flour-segmented chromosome. Improved solutions are produced by employing genetic operations known as selection, crossover, inversion, mutation, and refinement of these genes for successive generations. All relationships between the facilities and passages are represented as an adjacency graph. The shortest path and distance between two facilities are calculated using Dijkstra's algorithm of graph theory. Comparative testing shows that the proposed algorithm performs better than other existing algorithm for the optimal facility layout design. Finally, the proposed algorithm is applied to ship compartment layout problems with the computational results compared to an actual ship compartment layout.

  • PDF