• Title/Summary/Keyword: Optimal design method

검색결과 4,249건 처리시간 0.027초

토로이드형 변압기의 일관성있는 설계법과 그 최적화 알고리즘 (Unified Design Method for Toroidal Transformer and its Optimal Algorithm)

  • 김주홍;이광직
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제5권3호
    • /
    • pp.78-83
    • /
    • 1991
  • This study proposes a unified method to design toroidal transformer and its optimal design algorithm. This unified design method was derived from the fundamental equation of power on the basis of electromagnetic energy of a core and the definition of three parameters(K1, K2, KW) that influence the form of a core and the ratio of a core and coil. Accordingly this design method condenses the whole data for design of toroidal transformer to a standard variable which is the inner diameter of a core. The minimal cost, weight and volume values of the transformer were computed by means of the algorithm to search the optimal values of the parameters. Furthermore, through the CAD, the efficiency of this unified design method and optimal algorithm proposed in this paper was confirmed.

  • PDF

자동차용 휠의 응력을 고려한 근사 최적 설계 (Approximate Optimization Design Considering Automotive Wheel Stress)

  • 이현석;이종수
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.302-307
    • /
    • 2015
  • The automobile is an important means of transportation. For this reason, the automotive wheel is also an important component in the automotive industry because it acts as a load support and is closely related to safety. Thus, the wheel design is a very important safety aspect. In this paper, an optimal design for minimizing automotive wheel stress and increasing wheel safety is described. To study the optimal design, a central composite design (CCD) and D-optimal design theory are applied, and the approximate function using the response surface method (RSM) is generated. The optimal solutions using the non-dominant sorting genetic algorithm (NSGA-II) are then derived. Comparing CCD and D-optimal solution accuracy and verified the CCD can deduce more accuracy optimal solutions.

Optimal Design of a Novel Permanent Magnetic Actuator using Evolutionary Strategy Algorithm and Kriging Meta-model

  • Hong, Seung-Ki;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.471-477
    • /
    • 2014
  • The novel permanent magnetic actuator (PMA) and its optimal design method were proposed in this paper. The proposed PMA is referred to as the separated permanent magnetic actuator (SPMA) and significantly superior in terms of its cost and performance level over a conventional PMA. The proposed optimal design method uses the evolutionary strategy algorithm (ESA), the kriging meta-model (KMM), and the multi-step optimization. The KMM can compensate the slow convergence of the ESA. The proposed multi-step optimization process, which separates the independent variables, can decrease time and increase the reliability for the optimal design result. Briefly, the optimization time and the poor reliability of the optimum are mitigated by the proposed optimization method.

초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발 (Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes)

  • 심현보;이상헌;손기찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.77-81
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of Hynbo Shim and Kichan Son, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

  • PDF

초기 속도법을 이용한 최적 블랭크 설계 프로그램의 개발 (Development of Optimal Blank Shape Design Program Using the Initial Velocity of Boundary Nodes)

  • 심현보;이상헌;손기찬
    • 소성∙가공
    • /
    • 제11권6호
    • /
    • pp.487-494
    • /
    • 2002
  • A new method of optimal blank shape design using the initial nodal velocity (INOV) has been proposed for the drawings of arbitrary shaped cups. With the given information of tool shape and the final product shape, corresponding initial blank shape has been found from the motion of boundary nodes. Although the sensitivity method, the past work of the present authors, has been proved to be excellent method to find optimal blank shapes, the method has a problem that a couple of deformation analysis is required at each design step and it also exhibits an abnormal behaviors in the rigid body rotation prevailing region. In the present method INOV, only a single deformation analysis per each design stage is required. Drawings of practical products as well as oil-pan, have been chosen as the examples. At every case the optimal blank shapes have been obtained only after a few times of modification without predetermined deformation path. The deformed shape with predicted optimal blank almost coincides with the target shape at every case. Through the investigation the INOV is found to be very effective in the arbitrary shaped drawing process design.

스마트 TMD의 최적설계를 위한 파라메터 연구 (Parameter Study for Optimal Design of Smart TMD)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

Optimal design of an electro-pneumatic automatic transfer system

  • Um, Taijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.71-75
    • /
    • 1994
  • This paper presents a method of optimal design of an automatic transfer system which is controlled by the electro-pneumatic servo scheme. The electro-pneumatic automatic transfer system can move parts to desired points or displace defective parts. The dynamic performance of the system can be examined by observing the behavior of the output. The output of the servo control system is the motion of the cylinder, pneumatic actuator. The dynamic performance of the cylinder is governed by the parameters of the components of the entire system. The optimal design can be accomplished by selecting of the parameters such that the desired dynamic performance of the cylinder is obtained. The optimal set of parameters might be obtained through the repeated simulations. Repeated simulations, however, is not effective to determine the optimal set of parameters since the set of parameters is large. This paper presents modeling, application of an optimization method, and the numerical results. The optimization algorithm utilizes the concept of the conjugate gradient method. The results show that the suggested optimization scheme can render faster convergence of iteration compared to other method based on an algebraic optimization method and can reduce the design efforts.

  • PDF

이점 대각 이차 근사화 기법과 통계적 제한조건을 적용한 강건 최적설계 기법 (Robust Optimal Design Method Using Two-Point Diagonal Quadratic Approximation and Statistical Constraints)

  • 권용삼;김민수;김종립;최동훈
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2483-2491
    • /
    • 2002
  • This study presents an efficient method for robust optimal design. In order to avoid the excessive evaluations of the exact performance functions, two-point diagonal quadratic approximation method is employed for approximating them during optimization process. This approximation method is one of the two point approximation methods. Therefore, the second order sensitivity information of the approximated performance functions are calculated by an analytical method. As a result, this enables one to avoid the expensive evaluations of the exact $2^{nd}$ derivatives of the performance functions unlike the conventional robust optimal design methods based on the gradient information. Finally, in order to show the numerical performance of the proposed method, one mathematical problem and two mechanical design problems are solved and their results are compared with those of the conventional methods.

영구자석의 착자방향을 고려한 브러시리스DC 전동기의 효율 최적화 설계 (Efficiency Optimal Design of a Brushless DC Motor Considering the Magnetization Direction of Permanent Magnet)

  • 송정현;김병택
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.241-247
    • /
    • 2011
  • This paper is intended to improve efficiency of two-phase BLDC motor using analytical and statistical methods, and then the stability of the starting for the designed model is investigated. The characteristics of the motor according to magnetization directions of permanent magnet are analyzed through the analytical method, and design variables that affect the efficiency are selected. Preliminary optimal design is performed using the analytical method with the design variable. The RSM (Response Surface Method) based on the FEA (Finite Element Analysis) is applied to complement errors of the analytical method. As a result, the optimal design is determined. Finally, the stability of the starting for the optimal designed model is evaluated by analyzing cogging torque, and it is verified through the FEA.

다구찌 기법을 이용한 3 문형 냉장고 서랍용 롤러 레일의 설계 (Design of a Roller Rail for the Drawer of Three-Door Refrigerators Using Taguchi Method)

  • 이부윤;김제현
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.97-105
    • /
    • 2009
  • Optimal design of a roller rail which replaces the ball rail for three-door refrigerators is presented using the finite element analysis and the Taguchi method. Stress and deformation of the roller rail for an initial design are analyzed and evaluated. Optimal design parameters are determined using the Taguchi method. The maximum stress of the optimal design is favorably reduced comparing to the initial design. It is verified through an additional analysis that the drawer on the roller rail will not be derailed even if one opens the drawer with a transverse force.