• 제목/요약/키워드: Optimal design formulation

검색결과 219건 처리시간 0.028초

진동응답을 최소화하는 비구속형 제진보의 제진 부위 최적설계 (Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses)

  • 이두호
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.829-835
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beam is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. Vibration responses are calculated by using the modal superposition principle, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in suppressing nitration responses by means of unconstrained damping layer treatment.

Optimal laminate sequence of thin-walled composite beams of generic section using evolution strategies

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제34권5호
    • /
    • pp.597-609
    • /
    • 2010
  • A problem formulation and solution methodology for design optimization of laminated thin-walled composite beams of generic section is presented. Objective functions and constraint equations are given in the form of beam stiffness. For two different problems one for open section and the other for closed section, the objective function considered is bending stiffness about x-axis. Depending upon the case, one can consider bending, torsional and axial stiffnesses. The different search and optimization algorithm, known as Evolution Strategies (ES) has been applied to find the optimal fibre orientation of composite laminates. A multi-level optimization approach is also implemented by narrowing down the size of search space for individual design variables in each successive level of optimization process. The numerical results presented demonstrate the computational advantage of the proposed method "Evolution strategies" which become pronounced to solve optimization of thin-walled composite beams of generic section.

최적 러그 배치를 위한 골리앗 크레인의 와이어 로프와 선체 블록간의 동적 접촉력 계산 (Calculation of the Dynamic Contact Force between a Shipbuilding Block and Wire Ropes of a Goliath Crane for the Optimal Lug Arrangement)

  • 구남국;노명일;차주환
    • 한국전산구조공학회논문집
    • /
    • 제25권5호
    • /
    • pp.375-380
    • /
    • 2012
  • 본 연구에서는 선체 블록의 운반 작업 중 발생하는 동적 하중 및 골리앗 크레인의 와이어 로프(wire rope)와 선체 블록간의 동적 접촉력을 고려한 최적 러그 배치 시스템을 설계하고, 다물체계 동역학 커널과 외력 계산 커널을 개발하였다. 다물체계 동역학 커널은 recursive formulation을 이용하여 운동 방정식을 구성하였고, 외력 계산 커널은 비선형 유체 정역학적 힘, 선형 유체 동역학적 힘, 풍력, 계류력을 계산할 수 있다. 개발된 커널의 효용성을 검증하기 위해, 이를 이용하여 와이어 로프와 블록간의 간섭과 이때 작용하는 동적 접촉력을 계산하였고, 마지막으로 계산 결과를 반영하여 러그가 부착된 블록에 대한 구조 해석을 수행하였다.

Parameter estimation of four-parameter viscoelastic Burger model by inverse analysis: case studies of four oil-refineries

  • Dey, Arindam;Basudhar, Prabir Kr.
    • Interaction and multiscale mechanics
    • /
    • 제5권3호
    • /
    • pp.211-228
    • /
    • 2012
  • This paper reports the development of a generalized inverse analysis formulation for the parameter estimation of four-parameter Burger model. The analysis is carried out by formulating the problem as a mathematical programming formulation in terms of identification of the design vector, the objective function and the design constraints. Thereafter, the formulated constrained nonlinear multivariable problem is solved with the aid of fmincon: an in-built constrained optimization solver module available in MatLab. In order to gain experience, a synthetic case-study is considered wherein key issues such as the determination and setting up of variable bounds, global optimality of the solution and minimum number of data-points required for prediction of parameters is addressed. The results reveal that the developed technique is quite efficient in predicting the model parameters. The best result is obtained when the design variables are subjected to a lower bound without any upper bound. Global optimality of the solution is achieved using the developed technique. A minimum of 4-5 randomly selected data-points are required to achieve the optimal solution. The above technique has also been adopted for real-time settlement of four oil refineries with encouraging results.

위상최적설계를 이용한 다공성 물질의 형상 최적화 (Topology Optimization of Poroelastic Acoustic Foams for Absorption Coefficient Maximization)

  • 김윤영;김정수;강연준;이중석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.934-937
    • /
    • 2006
  • This investigation presents a topology formulation to design optimal poroelastic acoustic foams to maximize absorbing ability. For successful formulation, a single set of equations based on Biot's theory is adopted and an appropriate material interpolation strategy is newly developed. Because there was no earlier attempt to solve poroelastic acoustic foam design problems in topology optimization setting, many challenging issues including modeling and interpolation must be addressed. First, the simulation accuracy by a proposed unified model encompassing acoustic air and poroelastic material was checked against analytical and numerical results. Then a material interpolation scheme yielding a distinct acoustic air-poroelastic material distribution was developed. Using the proposed model and interpolation scheme, the topology optimization of a two-dimensional poroelastic acoustic foam for maximizing its absorption coefficient was carried out. Numerical results show that the absorption capacity of an optimized foam layout considerably increases in comparison with a nominal foam layout.

  • PDF

불확실성을 고려한 철도 교량의 LCC분석 시스템 개발 (Development of Uncertainty-Based Life-Cycle Cost System for Railroad Bridges)

  • 조중연;선종완;김이현;조효남
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1158-1164
    • /
    • 2007
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedentedly in civil engineering practice. Accordingly, it is expected that the life-cycle cost in the 21st century will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, so far, most researches in Koreahave only focused on roadway bridges, which are not applicable to railway bridges. Thus, this paper presents the formulation models and methods for uncertainty-based LCCA for railroad bridges consideringboth objective statistical data available in the agency database of railroad bridges management and subjective data obtained form interviews with experts of the railway agency, which are used to anew uncertainty-based expected maintenance/repair costs including lifetime indirect costs. For reliable assessment of the life-cycle maintenance/repair costs, statistical analysis considering maintenance history data and survey data including the subjective judgments of railway experts on maintenance/management of railroad bridges, are performed to categorize critical maintenance items and associated expected costs and uncertainty-based deterioration models are developed. Finally, the formulation for simulation-based LCC analysis of railway bridges with uncertainty-based deterioration models are applied to the design-decision problem, which is to select an optimal bridge type having minimum Life-Cycle cost among various railway bridges types such as steel plate girder bridge, and prestressed concrete girder bridge in the basic design phase.

  • PDF

Optimum design of reinforced concrete columns subjected to uniaxial flexural compression

  • Bordignon, R.;Kripka, M.
    • Computers and Concrete
    • /
    • 제9권5호
    • /
    • pp.327-340
    • /
    • 2012
  • The search for a design that meets both performance and safety, with minimal cost and lesser environmental impact was always the goal of structural engineers. In general, the design of conventional reinforced concrete structures is an iterative process based on rules of thumb established from the personal experience and intuition of the designer. However, such procedure makes the design process exhaustive and only occasionally leads to the best solution. In such context, this work presents the development and implementation of a mathematical formulation for obtaining optimal sections of reinforced concrete columns subjected to uniaxial flexural compression, based on the verification of strength proposed by the Brazilian standard NBR 6118 (ABNT 2007). To minimize the cost of the reinforced concrete columns, the Simulated Annealing optimization method was used, in which the amount and diameters of the reinforcement bars and the dimensions of the columns cross sections were considered as discrete variables. The results obtained were compared to those obtained from the conventional design procedure and other optimization methods, in an attempt to verify the influence of resistance class, variations in the magnitudes of bending moment and axial force, and material costs on the optimal design of reinforced concrete columns subjected to uniaxial flexural compression.

Optimal Sampling Plans of Reliability Using the Complex Number Function in the Complex System

  • Oh, Chung Hwan;Lee, Jong Chul;Cho, Nam Ho
    • 품질경영학회지
    • /
    • 제20권1호
    • /
    • pp.158-167
    • /
    • 1992
  • This paper represents the new techniques for optimal sampling plans of reliability applying the mathematical complex number(real and imaginary number) in the complex system of reliability. The research formulation represent a mathematical model Which preserves all essential aspects of the main and auxiliary factors of the research objectives. It is important to formule the problem in good agreement with the objective of the research considering the main and auxilary factors which affect the system performance. This model was repeatedly tested to determine the required statistical chatacteristics which in themselves determine the actual and standard distributions. The evaluation programs and techniques are developed for establishing criteria for sampling plans of reliability effectiveness, and the evaluation of system performance was based on the complex stochastic process(derived by the Runge-Kutta method. by kolmogorv's criterion and the transform of a solution to a Sturon-Liouville equation.) The special structure of this mathematical model is exploited to develop the optimal sampling plans of reliability in the complex system.

  • PDF

참게육 첨가 맛두부의 조직 및 관능 특성 (Sensory and Texture Properties of Seasoned Tofu Containing Freshwater Crab Meat)

  • 류홍수;신은수;장대흥
    • 한국수산과학회지
    • /
    • 제42권3호
    • /
    • pp.190-196
    • /
    • 2009
  • To optimize the mixing ratio of ingredients for optimal sensory qualities of seasoned tofu, a response surface methodology with a central composite design was performed on tofu containing freshwater crab meat (TCM). Using the desirability function technique, the optimal formulation was determined to be 3.67 g of freeze dried meat, 5.54 g of garlic powder, and 2,120 mL of soymilk. In the texture profile analysis, tofu prepared using the optimal ingredient ratio had a higher hardness, cohesiveness and gumminess than commercial tofu but TCM value for adhesiveness, springiness and chewiness were lower. However, the texture properties of TCM were not significantly different than those of commercial tofu.

재료조각법을 이용한 위상최적설계 (Topology Optimization Through Material Cloud Method)

  • 장수영;윤성기
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.22-29
    • /
    • 2005
  • A material cloud method, which is a new topology optimization method, is presented. In MCM, an optimal structure can be found out by manipulating sizes and positions of material clouds, which are lumps of material with specified properties. A numerical analysis for a specific distribution of material clouds is carried out using fixed background finite element mesh. Optimal material distribution can be element-wisely extracted from material clouds' distribution. In MCM, an expansion-reduction procedure of design domain for finding out better optimal solution can be naturally realized. Also the convergence of material distribution is faster and well-defined material distribution with fewer intermediate densities can be obtained. In addition, the control of minimum-member sizes in the material distribution can be realized to some extent. In this paper, basic concept of MCM is introduced, and formulation and optimization results of MCM are compared with those of the traditional density distribution method(DDM).