• Title/Summary/Keyword: Optimal design and control

Search Result 2,066, Processing Time 0.034 seconds

Investigation on How VMI affects Ongoing Performance of Supply Chain System

  • RYU, Chungsuk
    • Journal of Distribution Science
    • /
    • v.18 no.1
    • /
    • pp.85-94
    • /
    • 2020
  • Purpose: This study investigates the influence of VMI on the supply chain performance over time. By examining each supply chain member's ongoing performance, this study figures out how VMI allows the vendor to overcome the initial loss and eventually provides the benefit to every supply chain member. Research design, data, and methodology: The proposed mathematical model describes the supply chain system where a manufacturer and a retailer make the operational decisions to maximize their own profits. By using the numerical examples with arbitrary data, VMI and non-VMI are compared in terms of their profit changes over time. Results: The numerical analysis shows that VMI results in greater overall profits for both manufacturer and retailer than non-VMI, while the manufacturer make a loss in the early stage of VMI implementation. This study also examines the impacts of certain conditional factors on the performance of VMI. Conclusions: This study supports the idea that VMI leads to manufacturer's initial loss but it brings greater profits to both manufacturer and retailer than non-VMI after all. In addition, the result of this study provides the managerial implications about the particular condition that allows VMI to achieve a significant financial performance improvement over non-VMI.

Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing (100 kWh급 초전도 베어링의 지름방향 준정적 특성)

  • Jung, S.Y.;Park, B.J.;Han, Y.H.;Park, B.C.;Lee, J.P.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.

Dynamic Interactions between the Reactor Vessel and the CEDM of the Pressurized Water Reactor (가압경수로 원자로용기와 제어봉 구동장치의 동적 상호작용)

  • Jin, Choon-Eon
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.837-845
    • /
    • 1997
  • The dynamic interactions between the reactor vessel and the control element drive mechanisms (CEDMs) of a pressurized water reactor are studied with the simplified mathematical model. The CEDMs are modeled as multiple substructures having different masses and the reactor vessel as a single degree of freedom system. The explicit equation for the frequency responses of the multiple substructure system are presented for the case of harmonic base excitations. The optimum dynamic characteristics of the CEDMs are presented to reduce the dynamic responses of the reactor vessel. The mathematical model and its response equations are verified by finite element analysis for the detailed model of the reactor vessel and the CEDMs for the harmonic base excitations. It is finally shown that the optimal dynamic characteristics of the CEDM presented can be applicable for the aseismic design.

  • PDF

Design of FNN architecture based on HCM Clustering Method (HCM 클러스터링 기반 FNN 구조 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2821-2823
    • /
    • 2002
  • In this paper we propose the Multi-FNN (Fuzzy-Neural Networks) for optimal identification modeling of complex system. The proposed Multi-FNNs is based on a concept of FNNs and exploit linear inference being treated as generic inference mechanisms. In the networks learning, backpropagation(BP) algorithm of neural networks is used to updata the parameters of the network in order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM(Hard C-Means)clustering algorithm which carry out the input-output dat a preprocessing function and Genetic Algorithm which carry out optimization of model The HCM clustering method is utilized to determine the structure of Multi-FNNs. The parameters of Multi-FNN model such as apexes of membership function, learning rates, and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization abilities of the model. NOx emission process data of gas turbine power plant is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.

Design and Evaluation of a New Multicast Protocol in Large Micro-Mobility Environments (대규모 마이크로 모빌리티 환경에서의 멀티캐스트 프로토콜의 구현과 평가)

  • Kang, Ho-Seok;Shim, Young-Chul
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.51-60
    • /
    • 2008
  • Micro-mobility protocols have been developed to reduce the control message overhead due to movements of mobile nodes. With the spread of mobile devices, services using mobile nodes are increasing and multicast services are becoming more important in providing multimedia services. In this paper we propose a new multicast protocol suitable for micro-mobility environments. The proposed protocol is designed to maintain optimal multicast routing paths and continue to provide multicast services without disruption in spite of frequent handoffs due to movements of mobile nodes. We used simulation to evaluate the proposed protocol, compared its performance with existing multicast protocols for mobile environments including bi-directional tunneling, remote subscription, and MMA, and observed that the proposed protocol exhibited better performance in terms of transmission success ratio and overhead on the network.

Experimental Parametric Study on the Rotordynamic Characteristics and Optimal Design of a Flexible Rotor Supported by a Slotted-Ring Electro-Rheological Squeeze Film Damper (슬롯 링 형상을 갖는 전기 유변 스퀴즈 필름 댐퍼로 지지된 연성 로터의 동특성 및 최적설계 파라미터 실험 연구)

  • 이용복;김창호;이남수;최동훈;정시영
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.157-165
    • /
    • 2000
  • A discharge free Electro-Rheological Squeeze Film Damper (ER-SFD) with predetermined-clearances at leakage ends can inherently eliminate electric discharge problems while still supplying stable leakage control. Test results show that the damping force of the slotted-ring ER-SFD is mainly affected by electric voltage, oil supply pressure, position of the damper and ratio of effective surface area of slotted-rings. As the supply voltage is larger, the amplitudes of both slotted ER-SFD and rotor are decreased at first and second critical speeds. The influence of the oil supply pressure and the effective surface area ratio was shown mainly near the first critical speed. The effective surface area ratio of slotted-rings influences the reduction of flexible rotor vibration. As a result, experimental results confirm that the slotted-ring ER-SFD satisfactorily controls the flexible rotor vibration, while eliminates the inherent electric discharge problems in conventional ER-SFDs.

The Study of a Population and Generation Parameter's Characteristics on PID Gain Tuning with GA in Wide Solution Area (넓은 해영역에서의 GA를 이용한 PID 제어기 게인 조정에 따른 개체수와 세대수 파라미터의 특징에 관한 연구)

  • Jeong, Hwang Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.60-65
    • /
    • 2017
  • A GA is one of the best method to find optimal value in searching area. A GA is driven by probabilistic selection that based on the survival of the fittest. So this algorithm need a huge solving time even if it can be used lots of optimizing problem such as structural design, machine learning, system's identification and so on. This GA's characteristic constrain the program to drive offline. Some studies try to use this algorithm on online or reduce the GA's running time with parallel GA or micro GA. Unfortunately these studies still didn't reduce amount of fitness solving. If the chromosome was imported to the system, it affected system's stability. And when the control system uses online GA, it also doesn't have enough learning time. In this study, try to find stability criterion to reduce the chromosome's affection and find the characteristic of the number of population and generation when GA was driven into the wide searching area.

A Study on the Deformation of the Moving Pressure Plate in a Balanced Type Vane Pump (압력 평형형 베인 펌프의 가동 압력판 변형에 관한 연구)

  • 한동철;조명래;박신희;최상현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.277-285
    • /
    • 1998
  • This paper presents the deformation characteristics of the moving pressure plate in a balanced type vane pump that widely used automotive power steering systems. Moving pressure plate can control the clearance between rotor and plate in accordance with load pressure variation; it always guarantees that pump to have optimal volumetric efficiency. In this paper, firstly, we calculate the acting force on the pressure plate, which is used to determine the angular position and load condition for analyzing the deformation of pressure plate. Secondary, finite element method is used for the deformation analysis. As results of acting force analysis, it is found that maximum difference of forces occurs at angular position 28$\circ$ from the small arc center of cam ring and load pressure is a dominant factor to affect acting force variation. The deformation of pressure plate increases as load pressure increases. At high load pressure, the deformation of pressure plate becomes larger than the initial clearance between rotor and plate. Therefore, it is required to design the plate for controlling the deformation.

  • PDF

Development and Design of Robot Speed Reducer(RSR) with Straight Line Teeth Profile for Human Robot (휴먼 로봇을 위한 직선 치형을 갖는 로봇 감속기(RSR)의 설계 및 개발)

  • Nam Won-Ki;Jang In-Hun;Oh Se-Hoon;Shin Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.315-320
    • /
    • 2006
  • There are many types of reduction drives for industrial applications. In general, high precision speed reducer which has a cycloid or involute teeth profile, used to in robot. Because, it is essential to use precision reduction drives for accuracy of position control on robot system. In this paper, we propose a robot speed reducer(RSR) with straight line teeth profile, which has basically a triangle teeth profile. In new straight line teeth profile, we have a good result for strength, stress and stiffness by using finite element analysis and the results indicate that variation of eccentric coefficient affects the optimal tooth motion, and it can lower the stress and noise.