• Title/Summary/Keyword: Optimal current angle

Search Result 129, Processing Time 0.026 seconds

An Induction Motor Control System with Direct Torque and Flux Control (직접 토크 및 자속제어에 의한 유도전동기 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.79-84
    • /
    • 2000
  • This paper presents an implementation of digital position control system for an induction motor vector drives by a direct torque control(DTC) using the 16bit DSP TMS320 F240. The DSP controller enable enhanced real time algorithm and cost-effective design of intelligent controller for motors which can be yield enhanced operation, fewer system components, lower system cost, increased efficiency and high performance. The system presented are stator flux and torque observer using current model that inputs are current sensing of motor terminal and rotor angle for a low speed operating area, two hysteresis controller, optimal switching look-up table, and IGBT voltage source inverter by fully integrated control software. The developed control system are shown a good motion control response characteristic results and high performance features using 2.2Kw general purposed induction motor.

  • PDF

A new torque sharing function method for torque control of a switched reluctance motor (토크 공유 함수법을 이용한 새로운 방식의 스위치드 리럭턴스 모터의 토크 제어)

  • 최창환;이대옥;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.262-262
    • /
    • 2000
  • This paper presents a new torque sharing function method that extends the definition region of the conventional TSF to both the positive and negative torque production regions. By using this definition, all kinds of the control inputs that consider switching on/off angle control as well as the current profiling can be described. A parametrized representation of the current profiles is proposed by using a series of B-spline functions, which reduces memory requirement and enables additional controllers. Optimal determination of the TSFs are also investigated for various control objectives. Moreover, the comparison study of each objective is presented. Since this method generalizes all of the possible control input, the current and torque profiles obtained from the optimization are the most suitable control input that satisfy the objectives.

  • PDF

Torque Control of a Switched Reluctance Motor for the Precision Position Control of a Tank Gun (전차 포신의 정밀 위치 제어를 위한 스위치드 리럭턴스 모터의 토크 제어)

  • 최창환;김용대;이대옥;박기환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.42-52
    • /
    • 2000
  • A torque control method of a switched reluctance motor for the position control of a tank gun is presented. One of the widely used torque control scheme, torque sharing function method, is investigated and a new torque sharing function method is proposed that extends the definition region of the conventional TSF to both the positive and negative torque production regions. By using this definition, all kinds of the control inputs that consider switching on/off angle control as well as the current profiling can be described. A parametrized representation of the current profiles is proposed by using a series of B-spline functions, which reduces memory requirement and enables additional controllers. Optimal determination of the TSFs are also investigated for various control objectives. Moreover, the comparison study of each objective is presented. Since this method generalizes all of the possible control input, the current and torque profiles obtained from the optimization are the most suitable control input that satisfy the objectives.

  • PDF

A Study on the Controller for Reducing of In-Rush Current of Inductive Load (유도성 부하의 돌입전류저감을 위한 제어기에 관한 연구)

  • Park, Su-Kang;Cho, Geum-Bae;Baek, Hyung-Lae;Lim, Yang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1345-1347
    • /
    • 2000
  • This paper presents a new method to reducing inrush current and energy saving of capacitor starting single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch.

  • PDF

Current Sharing Method Based on Optimal Phase Shift Control for Interleaved Three-Phase Half Bridge LLC Converter with Floating Y-Connection

  • Shi, Lin;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.934-943
    • /
    • 2019
  • A current balance problem exists in multi-phase LLC converters due to the resonant parameter tolerance. This paper presents a current balancing method for interleaved three-phase half bridge LLC converters. This method regulates the phase shift angle of the driving signals between the three phases based on a converter with a floating Y-connection. The floating midpoint voltage has different influences on each phase current and makes the three-phase current balance performance better than midpoint non-floating systems. Phase shift control between modules can further regulate the midpoint voltage. Then three phase current sharing is realized without adding extra components. The current distributions in a midpoint non-floating system and a midpoint floating system are compared. Then the principle and implementation of the proposed control strategy are analyzed in detail. A 3kW prototype is built to verify the validity and feasibility of the proposed method.

Adjustable Switching Angle Control Method for High Efficiency SRM Drive (SRM의 고효율구동을 위한 가변 스위칭각 조정방식)

  • Kim, Jeong-Hong;Kong, Gwan-Sik;Ahn, Jin-Woo;Hwang, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.9-11
    • /
    • 1994
  • This paper describes an adjustable switching angle control method of Switched Reluctance Motor to improve the drive efficiency when variable loads applied. The control method to build-up optimal current shape is intended to improve the efficiency of SRM over the wide range of output power without requiring additional power devices, which gives more economic benefits compared with any other control methods.

  • PDF

Single Phase-Shift Modulation with Variable-Frequency to Reduce Conduction Losses of DAB Converters (DAB 컨버터의 전도 손실 저감을 위한 가변 주파수의 단일 위상 시프트 변조기법)

  • Dao, Ngoc Dat;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.124-125
    • /
    • 2019
  • This paper proposes a novel control method to minimize conduction losses of dual active bridge (DAB) converters for on-board chargers of electric vehicles (EVs). In the control method, two variables are regulated, which are the phase-shift angle between the primary and secondary full bridges and the switching frequency. From time-domain analysis, an optimal phase-shift angle is derived to achieve the minimum RMS value of the transformer current. The proposed method was implemented for a 3.6-kW SiC-based prototype to validate its effectiveness. A high efficiency over 97.3% has been achieved for a wide output voltage range.

  • PDF

Effects of Magnetizing Currents on Remanent Flux Density in Multipole Magnetizer (다극착자기에서 착자전류가 잔류자속밀도에 미치는 영향)

  • 박관수;이향범;배동진;한송엽;최홍순;홍정표;주관정
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.145-149
    • /
    • 1992
  • The characteristics of electromagnetic devices with permanent magnet depends greatly on the remanence pattern of permanent magnet. So, it is necessary to analyze the pattern of remanence in permanent magnet. This paper presents a finite element analysis of magnetizer considering the nonlinearity and anisotropy of yoke and magnet in magnetizer. The distributions of magnetizations are obtained according to the variations of magnetizing currents for two kinds of magnetizers with different magnetizing poles. It is found that the excessive magnetizing current results in the reduction and polarity reversion of magnetization in the multi-pole magnetizing system where the pole angle is too small. During the design and analyzing of multi-pole magnetizer, it must be considered that there exists an optimal value of magnetizing current and pole angle of magnetizer.

  • PDF

On the hydrodynamic resistance and stabilization of the coonstripe shrimp pot to reduce catch of a small size shrimp (자원관리형 반구형 새우통발의 형상 변화에 따른 유체저항 특성과 수중안정성)

  • Kim, Seong-Hun;Lee, Kyoung-Hoon;Kim, Hyung-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • For the optimal design of a shrimp pot to control the catch size and to reduce catch the small size shrimp, tank experiments were carried out to study the pot stability under water. Tank experiments were carried out to measure the drag with 4 kinds of model pots that have 50% selection on the individual of 25mm carapace length. The drag of each pot was measured every 10 times with changing the current speeds from 0.1m/s to 0.7m/s in 0.1m/s intervals and the pot attack angle from $0^{\circ}$ to $90^{\circ}$ in $15^{\circ}$ interval in a flume tank. The relation between the current speed and drag was presented. The stability of pot was estimated using the drag data and the friction data of Kim et al. (2008b). The results showed that, the drag was shown lower as small as the projected area of pot depending on the current speeds and angles. The model pots were showed to slide on the seabed in case of rock at the current speeds 0.35-0.38m/s and the possibility of turn over at the current speeds 0.77-0.89m/s. In conclusion, the stability of a shrimp pot showed more stable as the pot of the lower the height and the smaller projected area on current.

A Study on the Electrical Discharge Machining Tap by using Cu Electrodes of the Cold-Work Tool Steel (냉간 금형용 공구강의 Cu 전극을 이용한 방전 탭에 관한 연구)

  • Lee, Eun-Ju;Park, In-Soo;Kim, Hu-Kwon;Wang, Duck-Hyun;Chung, Han-Shik;Lee, Kwang-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.131-136
    • /
    • 2016
  • Currently, an EDM tapping procedure has comprised some parts of the engraving discharge process for the press die. Usually, tapping has been used in cases where we are unable to mechanically machine using steelwork processes due to an increase in the hardness of a material after heat treatment in relation to a design change or missing process. Here, we analyze the influence of discharge tap shape on discharge time, discharge current, and the number of repetition conditions when a cold-work tool steel (STD11) has been treated with a discharge tapped by a screw-shaped cu electrode. The most important influence on processing condition has been determined to be the number of discharge repetitions. As this number increases, the angle reduction of a thread closes to an angle of the electrode via a power generation reduction. The optimal combination of conditions has been determined to be three discharge repetitions, $180{\mu}s$ of discharge time (same as existing regulations), and 25.4A of peak current. A 0.2749db advantage has emerged after comparing between this combination of optimal conditions and the SN rate of existing regulations.