• Title/Summary/Keyword: Optimal Voltage Regulation

Search Result 29, Processing Time 0.019 seconds

Optimal Voltage Regulation Method for Distribution Systems with Distributed Generation Systems Using the Artificial Neural Networks

  • Kim, Byeong-Gi;Rho, Dae-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.712-718
    • /
    • 2013
  • With the development of industry and the improvement of living standards, better quality in power electric service is required more than ever before. This paper deals with the optimal algorithms for voltage regulation in the case where Distributed Storage and Generation (DSG) systems are operated in distribution systems. It is very difficult to handle the interconnection issues for proper voltage managements, because the randomness of the load variations and the irregular operation of DSG should be considered. This paper proposes the optimal on-line real time voltage regulation methods in power distribution systems interconnected with the DSG systems. In order to deliver suitable voltage to as many customers as possible, the optimal sending voltage should be decided by the effective voltage regulation method by using artificial neural networks to consider the rapid load variation and random operation characteristics of DSG systems. The simulation results from a case study show that the proposed method can be a practical tool for the voltage regulation in distribution systems including many DSG systems.

A Study on the Optimal Introduction of Step Voltage Regulator(SVR) in Distribution Feeders (고압배전선로용 선로전압조정장치(SVR)의 최적 도입방안에 관한 연구)

  • Lee Eun-Mi;Kim Mi-Young;Rho Dae-Seok;Sohn Sang-wook;Kim Jae-Eon;Park Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.610-618
    • /
    • 2004
  • With the development of industry and the improvement of living standards, better quality in power electric service is required more than ever before. Under these circumstances, to deliver reasonable voltage regulation methods in distribution systems need to be developed. So, This paper deals with optimal introduction of the line voltage regulator (SVR : Step Voltage Regulator) in power distribution systems. First, This paper investigates characteristics of SVR and performs economic evaluation of SVR's introduction by using Present Worth Method. This paper, also suggests proper location and optimal voltage regulation algorithm. In order to deliver suitable voltages to as many customers as possible, the optimal sending voltage of SVR should be decided by the effective operation of voltage regulators at the distribution feeders. The simulation results using a model distribution system and real distribution systems show that the proposed methods can be a practical tool for the voltage regulation in distribution systems.

A study on the Optimal Operation of Step Voltage Regulator(SVR) in the Distribution Feeders(3) (고압배전선로의 선로전압조정장치(SVR)의 최적운용에 관한 연구(3))

  • Lee, Eun-Mi;Rho, Dae-Seok;Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.97-99
    • /
    • 2003
  • This paper deals with optimal voltage regulation methods of line voltage regulator(SVR : Step Voltage Regulator) in power distribution systems. In order to deliver suitable voltages to as many customers as possible, the optimal sending voltage of SVR should be decided by the effective operation of voltage regulators at the distribution feeders and substations. In this paper, a new voltage regulation method based on the existing method is presented and an optimal coordination method of multiple voltage regulators is extended. The results from a case study show that the proposed methods can be a practical tool for the voltage regulation in distribution systems.

  • PDF

A Study on the Optimal Voltage Regulation in Distribution Systems with Dispersed Generation Systems (분산형전원이 도입된 배전계통의 최적전압조정 방안에 관한 연구)

  • Kim Mi-Young;Oh Yong-Taek;An Jae-Yun;Kim Jae-Eon;Kim Eung_Sang;Rho Dae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.251-258
    • /
    • 2005
  • Recently, the domestic and foreign power trends are the supply of high quality power and environment conservation technology based on the new energies development. So, the dispersed generation systems, such as photovoltaic, fuel cell, and battery are to be introduced in distribution systems. According to the situation change, power of high Quality and reliability are required in distribution systems with dispersed generation. Up to now, the voltage in distribution systems are regulated by ULTC of substation and pole transformer of primary feeders. These days, Step Voltage Regulator(SVR) is getting established at distribution feeders to regulate effectively voltage of primary ffeders that voltage drop exceeds $5\%$. But, because SVR is operated independently with ULTC of substation, SVR can not take play to its full effectivity. Under these circumstances, in order to deliver suitable voltages to as many customers as possible, new optimal voltage regulation algorithms are required in distribution system. So, this paper presents optimal voltage regulation algorithm to regulate voltage effectively for ULTC and SVR in distribution systems with dispersed generation systems.

A Study on the Voltage Regulation Method Based on Artificial Neural Networks for Distribution Systems Interconnected with Distributed Generation (분산전원이 연계된 배전계통에 있어서 ANN을 이용한 최적 전압조정방안에 관한 연구)

  • Rho, Dae-Seok;Kim, Eui-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3130-3136
    • /
    • 2009
  • This paper deals with the optimal on-line real time voltage regulation methods in power distribution systems interconnected with the Distributed Generation(DG) systems. In order to deliver suitable voltage to as many customers as possible, the optimal sending voltage should be decided by the effective voltage regulation method by using artificial neural networks to consider the rapid load variation and random operation characteristics of DG systems. The results from a case study show that the proposed method can be a practical tool for the voltage regulation in distribution systems including many DG systems.

A Modeling Method of Load Section on High Voltage Distribution Line Integrated with Dispersed Generation System for Real-Time Optimal Voltage Regulation (분산형전원이 도입된 배전계통의 리얼타임 최적전압조정을 위한 부하구간 모델링방법)

  • Kim, Jae-Eon;Kim, Tae-Eung
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.699-703
    • /
    • 1999
  • It is known that the LDC(Line-Drop Compensator) becomes to lose the function of proper voltage regulation for its load currents due to the real and reactive power generated by DGS(Dispersed Generation System), when DGS is introduced into the power distribution system of which the voltage is controlled by LDC. Therefore, in that case, it is very difficult to regulate the distribution line voltage properly by using LDC. One possible solution for this problem is the real-time voltage regulation method which is to optimally regulate the sending-end voltage in real-time by collecting the real-time load data of each load data of each load section between measuring points and by calculating the optimal seding-end voltage value from them. For this, we must know the real-time load data of each load section. In this paper, a modeling method of representing a load section on high voltage line with DGSs as an equivalent lumped load is proposed for gaining the real-time load data. In addition a method of locating the measuring points is proposed. Then, these proposed methods are evaluated through computer simulations.

  • PDF

Analysis of the Hosting Capacity of the Distributed Generation and Voltage Regulation Devices Operation According to Reactive Power Control Scheme of the Inverter-based Distributed Generation (인버터 기반 분산전원의 무효전력 제어 특성에 따른 분산전원의 수용용량 및 전압조정 설비의 운영 계획 분석)

  • Cho, Gyu-Jung;Kim, Ji-Soo;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.809-815
    • /
    • 2018
  • Distributed generations (DGs) using renewable energy resources in power systems have been widely integrated, and many of these DGs have intermittency. DGs can significantly affect the overall voltage profile of the system through the reactive power control for a voltage support. Therefore, in the planning stage of the optimal operation and dispatch of voltage regulation devices, DGs' hosting capacity with the reactive power control scheme should be considered. In this paper, we model the IEEE 34-bus test feeder, including all essential equipment. An optimization method is utilized to determine the optimal siting and operation of the voltage regulation devices in the presence of DGs with reactive power control scheme. Finally, we compare the optimal results of the each case to analyze the relationship among the hosting capacity of the DGs and voltage regulation devices operation.

Optimal Algorithms for Voltage Management in Distribution Systems Interconnected with New Dispersed Sources

  • Rho, Dae-Seok;Kook, Kyung-Soo;Wang, Yong-Peel
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.192-201
    • /
    • 2011
  • The optimal evaluation algorithms for voltage regulation in the case where new dispersed sources are operated in distribution systems are studied. Handling the interconnection issues for proper voltage managements are often difficult and complicated because professional skills and enormous amounts of data during evaluations are needed. Typical evaluation algorithms mainly depend on human ability and quality of data acquired, which inevitably cause the different results for the same issue. Thus, unfair and subjective evaluations are unavoidable. In order to overcome these problems, we propose reasonable and general algorithms based on the standard model system and proper criterion, which offers fair and objective evaluation in any case. The proposed algorithms are divided into two main themes. One is an optimal algorithm for the voltage control of multiple voltage regulators in order to deliver suitable voltage to as many customers as possible, and the other is a proper evaluation algorithm for the voltage management at normal and emergency conditions. Results from a case study show that proposed methods can be a practical tool for the voltage management in distribution systems including dispersed sources.

Control of a Three-Phase Voltage-Source PWM Converter with an Extended Operation Region (확장된 동작 영역을 갖는 3상 전압원 PWM 컨버터 제어)

  • 민동기;안성찬;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.9-13
    • /
    • 1997
  • In this paper, the operation regions of a three-phase voltage-source PWM converter are defined: linear modulation region, allowed current region, linear control region, unity power-factor region, and power-factor decreasing region. Particularly, the power-factor decreasing region is first examined and defined as the region where both the sinusoidal input current control and the stable DC link voltage regulation can not be obtained with a unity power-factor operation. To avoid these undesirable effects, the optimal current vector is derived, which ensures the sinusoidal input current and the stable DC link voltage regulation with maximum power-factor available, and, in consequence, it extends the operation region of the PWM converter. The validity of the proposed control scheme is proved by the computer simulation.

  • PDF

A Study on the Control Method of Customer Voltage Variation in Distribution System with PV Systems

  • Kim, Byung-ki;Choi, Sung-sik;Wang, Yong-peel;Kim, Eung-sang;Rho, Dae-seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.838-846
    • /
    • 2015
  • This paper deals with the modified modeling of PV system based on the PSCAD/EMTDC and optimal control method of customer voltages in real distribution system interconnected with the photovoltaic (PV) systems. In order to analyze voltage variation characteristics, the specific modeling of PV system which contains the theory of d-q transformation, current-control algorithm and sinusoidal PWM method is being required. However, the conventional modeling of PV system can only perform the modeling of small-scale active power of less than 60 [kW]. Therefore, this paper presents a modified modeling that can perform the large-scale active power of more than 1 [MW]. And also, this paper proposes the optimal operation method of step voltage regulator (SVR) in order to solve the voltage variation problem when the PV systems are interconnected with the distribution feeders. From the simulation results, it is confirmed that this paper is effective tool for voltage analysis in distribution system with PV systems.